Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Áp dụng định lý Pitago có:
$AD=\sqrt{BD^2-AB^2}=5\sqrt{3}$
$BC=\sqrt{CD^2-BD^2}=\sqrt{20^2-10^2}=10\sqrt{3}$
Xét tam giác $BAD$ và $DBC$ có:
$\widehat{A}=\widehat{B}=90^0$
$\frac{AB}{AD}=\frac{BD}{BC}$ (bạn tự thay giá trị vô)
$\Rightarrow \triangle BAD\sim \triangle DBC$ (c.g.c)
$\Rightarrow \widehat{ABD}=\widehat{BDC}$. Hai góc này ở vị trí so le trong nên $AB\parallel CD$
$\Rightarrow $ABCD$ là hình thang.
b) Từ độ dài các cạnh ta có:
Xét tam giác $ABD$ và $BDC$ có:
$\frac{AB}{BD}=\frac{BD}{DC}=\frac{1}{2}$
$\frac{AB}{AD}=\frac{BD}{BC}=\frac{3}{4}$
$\frac{BD}{AD}=\frac{DC}{BC}=\frac{3}{2}$
$\Rightarrow \triangle ABD\sim \triangle BDC$ (c.c.c)
$\Rightarrow \widehat{ABD}=\widehat{BDC}$.
Hai góc này ở vị trí so le trong nên $AB\parallel CD$ nên $ABCD$ là hình thang.
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ