Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ư(30)={1;2;3;5;6;10;15;30}
- Có thể chia thành 2 nhóm, mỗi nhóm 15 người hoặc chia thành 3 nhóm mỗi nhóm 10 người hoặc chia thành 5 nhóm mỗi nhóm 6 người hoặc chia thành 6 nhóm mỗi nhóm 5 người hoặc chia thành 10 nhóm mỗi nhóm 3 người hoặc chia thành 15 nhóm mỗi nhóm 2 người.
Phân tích 30 ra thừa số nguyên tố ta đc: \(30=2.3.5\)
Ta có bảng sau:
Số nhóm | Số người một nhóm |
2 | 15 |
3 | 10 |
5 | 6 |
6 | 5 |
10 | 3 |
15 | 2 |
Trường đó có số học sinh là:
\(64\div12,8\times100=500\)(học sinh)
Trường đó có số học sinh là :
64 : 12,8 x 100 = 500 ( học sinh )
Đáp sô: 500 học sinh
Có thể chia nhiều nhất đc 4 nhóm
20 bạn nam chia thành 4 nhóm mỗi nhóm 5 bạn
24 bạn nữ chia thành 4 nhóm mỗi nhóm 6 bạn
Hok tốt nhé!!!
Trong câu hỏi tương tự có nha bạn !
Nhớ tick cho mik nha !!!
30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số theo thứ tự từ 1 đến 10.
không có ghế số 15 đâu nhé bạn
Từ đề bài ta suy ra trong 30 người có đúng 15 cặp hiệp sĩ – kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh ở các vị trí chẵn và đều là kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.
Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.
Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".
Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp:
1) Nếu họ ngồi cạnh nhau thì hiệp sĩ sẽ nói đúng, còn kẻ lừa dối nói “Không”.
2) Nếu họ không ngồi cạnh nhau thì hiệp sĩ nói “Không”, còn kẻ lừa dối nói “Đúng”.
Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.
Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là hiệp sĩ, có bao nhiêu người là kẻ lừa dối và họ xếp ở những vị trí nào.
chac ban moi tay lam phai ko ghi het cai nay ma chet
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn (như 1+1 = ?). Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.
Gọi m và n là số học sinh trong 2 nhóm. Xét bất kỳ A thuộc nhóm nói thật và B thuộc nhóm nói dối. Do cả A và B đều biết đối tượng thuộc nhóm gì nên sau khi trao đổi với nhau thì A sẽ tuyên B nói dối và B cũng tuyên A nói dối. Từ đó suy ra đợt giao lưu đầu tiên có tổng cộng 2mn = 640 lần nói dối hay mn = 320 (1)
.
Do học sinh vắng mặt thuộc một trong 2 nhóm nên đợt giao lưu thứ 2 có tổng cộng 2(m–1)n = 600 hoặc 2m(n–1) = 600 lần nói dối, tức là có (m–1)n = 300 hoặc m(n–1) = 300 lần nói dối (2).
Từ (1) và (2) suy ra m = 16, n = 20 hoặc m = 20, n = 16 nhưng trong cả hai trường hợp ta đều có m + n = 36.
Vậy lớp học có 36 học sinh.
sai rùi