cho 2 số A(n) và B(n) như sau:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 4 2024

\(A-B=2.2^{n+1}=2^{n+2}\) là 1 lũy thừa của 2 nên ko chia hết cho 5

\(\Rightarrow A;B\) ko thể đồng thời chia hết cho 5

\(\Rightarrow\) Trong 2 số A, B có tối đa 1 số chia hết cho 5

Do \(16\equiv1\left(mod5\right)\) nên:

TH1: \(n=4k\Rightarrow\left\{{}\begin{matrix}2^{2n+1}=2^{8k+1}=2.\left(16\right)^{2k}\\2^{n+1}=2^{4k+1}=2.\left(16\right)^k\end{matrix}\right.\)

Do \(A=2.\left(16\right)^{2k}+2.\left(16\right)^k+1\equiv2+2+1\left(mod5\right)\equiv0\left(mod5\right)\)

\(\Rightarrow A\) chia hết cho 5 (và hiển nhiên, theo cm ban đầu B sẽ ko chia hết cho 5)

TH2: \(n=4k+1\Rightarrow\left\{{}\begin{matrix}2^{2n+1}=2^{8k+3}=8.\left(16\right)^{2k}\\2^{n+1}=2^{4k+2}=4.\left(16\right)^k\end{matrix}\right.\)

\(\Rightarrow B=8\left(16\right)^{2k}-4.\left(16\right)^k+1\equiv8-4+1\left(mod5\right)\equiv0\left(mod5\right)\)

\(\Rightarrow B\) chia hết cho 5

TH3: \(n=4k+2\Rightarrow\left\{{}\begin{matrix}2^{2n+1}=2^{8k+5}=2.\left(16\right)^{2k+1}\\2^{n+1}=2^{4k+3}=8.\left(16\right)^k\end{matrix}\right.\)

\(B=2.\left(16\right)^{2k+1}-8.\left(16\right)^k+1\equiv2-8+1\left(mod5\right)\equiv0\left(mod5\right)\)

\(\Rightarrow B\) chia hết cho 5

TH4: \(n=4k+3\Rightarrow\left\{{}\begin{matrix}2^{2n+1}=2^{8k+7}=8.\left(16\right)^{2k+1}\\2^{n+1}=\left(16\right)^{k+1}\end{matrix}\right.\)

\(\Rightarrow A=8.\left(16\right)^{2k+1}+\left(16\right)^{k+1}+1\equiv8+1+1\left(mod5\right)\equiv0\left(mod5\right)\)

\(\Rightarrow A\) chia hết cho 5

Vậy với mọi số tự nhiên n thì trong 2 số A và B luôn tồn tại 1 và chỉ 1 số chia hết cho 5

7 tháng 1 2018

Ta có : 

\(A_{\left(n\right)}.B_{\left(n\right)}=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=\left[\left(2^{2n+1}+1\right)-2^{n+1}\right]\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\)

\(=\left(2^{2n+1}+1\right)^2-\left(2^{n+1}\right)^2\)

\(=\left(2^{2n+1}\right)^2+2.2^{2n+1}+1-\left(2^{n+1}\right)^2\)

\(=2^{4n+2}+2^{2n+2}+1-2^{2n+2}\)

\(=4^{2n+1}+1\) luôn chia hết cho 5\(\forall n\in N\)

Do đó \(A_{\left(n\right)}.B_{\left(n\right)}\) chia hết cho 5 hay tồn tại 1 và duy nhất \(A_{\left(n\right)}\) hoặc \(B_{\left(n\right)}\) chia hết cho 5

2 tháng 7 2019

#)Giải :

Giả sử cả A và B đều chia hết cho 5 

=> a - b chia hết cho 5 

=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5 

=> 22n + 1 chia hết cho 5 

Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra

=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5

=> đpcm

DD
14 tháng 5 2021

\(AB=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=4^{2x+1}+1\)

\(=\left(5-1\right)^{2n+1}+1⋮5\)

mà \(\left(A,B\right)=1\)do đó ta có đpcm. 

Đây là theo cách giải của mik nha:

lấy A.B = 2^(4n+2)+1 = 4.16^n+1
Mà 16^n luôn có đuôi bằng 6 hoặc 1 (khi n=0) với mọi n
=> 4.16^n luôn có đuôi bằng 4
=> A.B luôn có đuôi bằng 5
=> ĐPCM

Ta có:

A.B=2^(4n+2) + 1=2^(4n).2^(2) + 1=16^(n).4 + 1. Dễ dàng nhận thấy 16^n luôn có tận cùng bằng 6 => 16^(n).4 có tận cùng bằng 4=> 16^(n).4 + 1 có tận cùng bằng 5, chia hết cho 5 => Ít nhất có 1 số A hoặc B chia hết cho 5. Mặt khác A - B= 2.2^(n+1) = 2^(2n+1), ko chia hết cho 5 với mọi n => A và B ko thể đồng thời chia hết cho 5. Kết hợp => Đpcm.