\(M=\frac{3\sqrt{18}+2\sqrt{50}-3\sqrt{72}+4\sqrt{98}}{2\sqrt{8}+3\sqrt{12}-5\sqrt{20}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

Bài này là bài của lớp 9 nha!! có chỗ nào ko hiểu ib

\(a,A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}.\)

\(=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)

\(=\sqrt{2}\left(3+5-\frac{7}{2}\right)\)

\(=\frac{9}{2}\sqrt{2}\)

\(b,B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)\)

\(=2^2\sqrt{3^2}-7^2\)

\(=12-49=-37\)

12 tháng 11 2018

a ) 

\(A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}\)

\(A=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)

\(A=(3+5-\frac{7}{2})\sqrt{2}\)

\(A=\frac{9}{2}\sqrt{2}=\frac{9\sqrt{2}}{2}\)

b)

\(B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)=\left(2\sqrt{3}\right)^2-7^2=12-49=-37\)

3 tháng 7 2017

\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

Ta có : \(6< 6.25\Rightarrow\sqrt{6}< \sqrt{6.25}\Rightarrow\sqrt{6}< 2.5\)

\(12< 12.25\Rightarrow\sqrt{12}< \sqrt{12.25}\Rightarrow\sqrt{12}< 3.5\)

\(20< 20.25\Rightarrow\sqrt{20}< \sqrt{20.25}\Rightarrow\sqrt{20}< 4.5\)

\(30< 30.25\Rightarrow\sqrt{30}< \sqrt{30.25}\Rightarrow\sqrt{30}< 5.5\)

\(42< 42.25\Rightarrow\sqrt{42}< \sqrt{42.25}\Rightarrow\sqrt{42}< 6.5\)

\(50< 56.5\Rightarrow\sqrt{50}< \sqrt{56.25}\Rightarrow\sqrt{50}< 7.5\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 2.5+3.5+4.5+5.5+6.5+7.5\)

\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

3 tháng 7 2017

\(\)\(\text{a) }\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

Ta có : \(1< 9\Rightarrow\sqrt{1}< \sqrt{9}\Rightarrow\sqrt{1}< 3\)

\(2< 9\Rightarrow\sqrt{2}< \sqrt{9}\Rightarrow\sqrt{2}< 3\)

\(3< 9\Rightarrow\sqrt{3}< \sqrt{9}\Rightarrow\sqrt{3}< 3\)

\(...\)

\(8< 9\Rightarrow\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3+3+...+3_{\left(\text{8 số hạng 3}\right)}\) \(\) \(\)

\(\) \(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3\cdot8\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

\(\text{b) }\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

Ta có : \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}< \dfrac{1}{\sqrt{100}}\)

\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}< \dfrac{1}{\sqrt{100}}\)

\(...\)

\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}_{\left(\text{100 số hạng}\dfrac{1}{\sqrt{100}}\right)}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}\cdot100\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{10}{\sqrt{100}}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\) \(\left(ĐPCM\right)\)

Vậy \(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

\(\)

a)\(\frac{21}{\sqrt{14}}\)=\(\frac{21.\sqrt{14}}{14}\)=\(\frac{3\sqrt{14}}{2}\)

b)\(\frac{3}{\sqrt{2}}+\frac{\sqrt{2}}{3}=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{3}=\frac{9\sqrt{2}}{6}+\frac{2\sqrt{2}}{6}=\frac{11\sqrt{2}}{6}\)

c)=\(-46\sqrt{5}\)

14 tháng 7 2015

 Dinh Nguyen Ha Linh bn vào câu hỏi của tôi rùi ấn sửa nội dung cho đúng đi nhé

7 tháng 9 2017

Ta có : \(\left(x-5\right)^4+\frac{14}{17}=\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\)

Vì : \(\left[\left(x-5\right)^2\right]^2\ge0\forall x\) 

Nên : \(\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\ge\frac{14}{17}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{14}{17}\) khi x = 5

b) Vì : \(\left(\frac{3}{7}-14x\right)^2\ge0\forall x\) 

Nên : \(\left(\frac{3}{7}-14x\right)^2-\frac{214}{979}\ge-\frac{214}{979}\forall x\)

Vậy GTNN của biểu thức là : \(-\frac{214}{979}\) khi \(\frac{3}{7}-14x=0\) \(\Rightarrow14x=\frac{3}{7}\) \(\Rightarrow x=\frac{3}{7}.\frac{1}{14}=\frac{3}{98}\)