Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Mình không biết làm.
Bài 2:
TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)
=> (n+20102011) chia hết cho 2.
Nên (n+20102011)(n+2011) chia hết cho 2
TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)
=> n + 2011 chia hết cho 2
Nên (n+20102011)(n+2011) chia hết cho 2
Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N
Do 1009 có 8 chữ số tận cùng là 009 chia 8 dư 1 => 1009 chia 8 dư 1, mũ lên bao nhiêu vẫn chia 8 dư 1
=> 10091997 chia 8 dư 1, mà 3 chia 8 dư 3
=> 10091997 + 3 chia 8 dư 4
BÀi 2
( x+ 1 )+ ( x +2 ) + ... + ( x + 100) = 5750
x + 1 +x + 2 + .. x+ 100 = 5750
(x+ x+ .. +x ) + ( 1+ 2 + ... +100) = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
Mình làm cách khác được kết quả là 25
Còn cách này mình chưa biết làm , mong các bạn giúp đỡ
Đúng mình sẽ tick cho 2 tick
Ta có: 1998 ≡ 0 (mod 111) => 1997 ≡ -1 (mod 111) và 1999 ≡ 1 (mod 111)
Nên ta có: 1997^1998 + 1998^1999 +1999^2000 ≡ 2 (mod 111) (1997^1998 + 1998^1999 +1999^2000 )10 ≡ 210 (mod 111)
Mặt khác ta có: 210 = 1024 ≡ 25 (mod 111) Vậy (1997^1998 + 1998^1999 +1999^2000 ) ^ 10 chia cho 111 có số dư là 25
1. Ta có 2112 =(213)4 = 92614. Vì 54 < 9261 nên 544 < 92614
Vậy 544 < 2112.
( cách này chỉ áp dụng với một số trường hợp, trương hợp số lớn hơn thì khó làm !!!)
Ta có:2 đồng dư với -1(mod 3)
=>21997 đồng dư với -11997(mod 3)
=>21997 đồng dư với -1(mod 3)
=>21997-(-1) chia hết cho 3
=>21997+1 chia hết cho 3
=>21997 chia 3 du 2
mjk thấy số chẵn chia 3 dư 1 mà