Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bạn tìm đenta phẩy
sau đó cho đenta phẩy lớn hơn 0
b, bn tìm x1+x2=.., x1*x2=.. theo hệ thức viets
sau đó quy đơngf pt 1/x1+1/x2>1
thay x1+x2.... vào pt đó
tìm đc m nha
Với x=1
12-2(2m-1).1+4m-8=0
1-4m+2+4m-8=0
-5=0 (vô lý)
Δ=4(2m-1)2-4(4m-8)
=8m2-16m+36
=8(m-1)2+28>0
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=2m-1\end{cases}}\)
\(2\left(x_1^2+x_2^2\right)-5x_1x_2=27\Leftrightarrow2\left(x_1^2+x_2^2+2x_1x_2\right)-9x_1x_2=27\)
\(2\left(x_1+x_2\right)^2-9x_1x_2=27\)
\(\Rightarrow2\left(2m\right)^2-9\left(2m-1\right)=27\\ \Leftrightarrow8m^2-18m+9=0\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{3}{4}\end{cases}}\)
b/ \(\Delta'=m^2+4m+11=\left(m+2\right)^2+7>0\) \(\forall m\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
c/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=-5\)
\(\Leftrightarrow\frac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
\(\Leftrightarrow\frac{4m^2+8m+22-2m}{-4m-11-2m+1}=-5\Leftrightarrow4m^2+6m+22=30m+50\)
\(\Leftrightarrow4m^2-24m-28=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=7\end{matrix}\right.\)
a) Khi m = 1, pt trở thành:
\(x^2-2x-15=0\\ \Leftrightarrow x^2+3x-5x-15=0\\ \Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(b)\Delta'=b'^2-ac\\ =\left(-m\right)^2-1\left(-4m-11\right)\\ =m^2+4m+11\\ =\left(m^2+2.m.2+2^2\right)+7\\ =\left(m+2\right)^2+7>\forall m\)
\(c)\)Theo hệ thức Vi - ét: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m\\x_1.x_2=\frac{c}{a}=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\\ \Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}=-5\\ \Leftrightarrow\frac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}=-5\\ \Leftrightarrow\frac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\\ \Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
Thay vào là được nhé! Tự tiếp giúp mình
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
a) \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)
\(\Delta'=m^2+2m+1+m^2-4m=2m^2-2m+1\)
\(\Delta'=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\)
=> pt luôn có 2 nghiệm phân biệt
b) Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)
Theo bài ra, ta có: A = |x1 - x2|
A2 = (x1 - x2)2 = (x1 + x2)2 - 4x1x2
A2 = [2(m + 1)]2 - 4(4m - m2)
A2 = 4m2 + 8m + 4 - 8m + 4m2 = 8m2 + 4 \(\ge\)4 với mọi m
Dấu "=" xảy ra <=> m = 0
Vậy MinA = 4 khi m = 0
a) Xét \(\Delta'=\left(m+1\right)^2-\left(4m-m^2\right)=2m^2-2m+1=m^2+\left(m-1\right)^2>0\)với mọi m
Vậy pt trên luôn có 2 nghiệm phân biệt với mọi m
b) Gọi x1 ; x2 là 2 nghiệm của pt trên . Theo hệ thức Viet , ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)
Xét \(A^2=\left|x_1-x_2\right|^2=\left(x_1+x_2\right)^2-4x_1x_2=4\left(m+1\right)^2-4\left(4m-m^2\right)\)
\(=8m^2-8m+4=2\left(4m^2-4m+1\right)+2=2\left(2m-1\right)^2+2\ge2\)
Dấu " = " xảy ra khi 2m - 1 = 0
Vậy \(A^2\ge2\Leftrightarrow A=\left|x_1-x_2\right|\ge\sqrt{2}\)
Dấu " = " xảy ra khi \(m=\frac{1}{2}\)
Do đó minA \(=\sqrt{2}\)khi \(m=\frac{1}{2}\)