Giải phương trình : \(\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

Giải :

\(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4=0\: \text{ }\left(\text{vì}\:x^2+1\ne0\right)\: \)

\(\Leftrightarrow\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-2\right\}\).

\(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)

\(\Rightarrow x^2+4x+4=0\left(x^2+1>0\right)\)

\(\Rightarrow\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

2 tháng 7 2019

2.( x - 2 ) + 1 = x - 1

\(\Leftrightarrow\) 2x - 4 + 1 - x + 1 = 0

\(\Leftrightarrow\)x - 2 = 0

\(\Leftrightarrow\)x = 2

Vậy phương trình có nghiệm là: x = 2

2 tháng 7 2019

\(2\left(x-2\right)+1=x-1\)

\(\Leftrightarrow2x-4+1-x+1=0\)

\(\Leftrightarrow x-2=0\)

vậy x = 2

\(\Rightarrow x=2\)

28 tháng 1 2016

b)      \(3x^2-10x+8=0\)

\(\Leftrightarrow\left(3x^2-4x\right)-\left(6x-8\right)=0\)

\(\Leftrightarrow x\left(3x-4\right)-2\left(3x-4\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(x-2\right)=0\)

đến đây bn tự giải típ nhé. Phương trình tích

25 tháng 1 2017

2x3 + 3x2 + 6x + 5 = 02

<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0

<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0

<=> (2x2 + x + 5)(x + 1) = 0

<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)

<=> x = - 1

Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)

25 tháng 1 2017

b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0

<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0

<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0

<=> (2x + 5)(2x3 + x2 - 3) = 0

<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0

<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0

<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0

Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)

\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)

Vậy ...

8 tháng 6 2017

đề là j ạ ?

8 tháng 6 2017

Mình rút gọn rồi bạn thích làm gì thì làm :v

\(\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x-1\right)\)

\(=\left(x^2-\dfrac{1}{4}\right)\left(4x-1\right)\)

\(=4x^3-x^2-x+\dfrac{1}{4}\)

10 tháng 7 2017

Theo đề bài ta có :

\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)

=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)

=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)

=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)

=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)

=> \(3x^3+5x-5x^2-x^4-2=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)

=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)

=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)

=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)

=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)

=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)

Ta Thấy :

\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)

=> x = 1

3 tháng 7 2019

\(\sqrt{\left(2x+3\right)^2}=x-5\)

\(\Rightarrow2x+3=x-5\)

\(\Rightarrow2x-x=-5-3\)

\(\Rightarrow x=-8\)

\(\sqrt{\left(2x+3\right)^2}=x-5\)

\(\Leftrightarrow2x+3=x-5\)

\(\Leftrightarrow2x-x=-5-3\)

\(\Leftrightarrow x=-8\)

10 tháng 3 2019

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni

11 tháng 3 2019

( x - 2 ).( x + 3 )2  -  ( x - 2 ).(x - 1)2  = 0

(=) ( x - 2 ).[ ( x + 3 )2 - ( x - 1 )2 ] = 0

(=)  ( x - 2).[ x2 + 6x + 9 - x2 + 2x - 1] = 0

(=) ( x - 2 ) .( 8x + 8 ) = 0

(=)  \(\orbr{\begin{cases}x-2=0\\8x+8=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy phương trình có nghiệm là : x = 2 , -1

b) 9x- 6x + 1 = 4x2

(=) 9x2 - 6x + 1 - 4x2 = 0

(=)  5x2 - 6x + 1 = 0

(=)  5x2 - 5x - x + 1 = 0

(=) 5x.( x - 1 ) - (x - 1) = 0

(=) ( x - 1 ).( 5x - 1) = 0

(=)\(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

Vậy phương trình có nghiệm là : x = 1 , \(\frac{1}{5}\)

c) ( x - 3 ) - \(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= 1

(=) \(\frac{3\left(x-3\right)}{3}\)\(-\)\(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)\(\frac{3}{3}\)

(=) 3.( x - 3) - ( x - 3 ).( 2x +1 ) = 3

(=) 3x - 9 - 2x2 +5x +3 -3 = 0

(=) -2x2 +8x -9 = 0 (loại )

Vậy phương trình vô nghiệm

d)  x2 + 6x - 7 =0

(=) x+7x - x - 7 = 0

(=) x.( x + 7 ) - ( x + 7 ) = 0 

(=)  ( x - 1 ) .( x+7 ) = 0

(=)  \(\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=-7\end{cases}}\)

Vậy phương trình có nghiệm là : x = 1 , -7

3 tháng 2 2021

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

3 tháng 2 2021

2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)

Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy x = -2 hoặc x = -4