Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
1,x^2-(x+1)(x-1)=0
x^2-x^2+1+0
1=0(vô lý)
2,5x^3+3x^2+3x+1=4x^2
x^3+3x^2+3x+1=0
(x+1)=0
x=-1
3,x^3+x^2=0
x^2(x+1)=0
x=0 or x=-1
4,2x^3-12x^2+18x=0
x^3-6x^2+9x=0
x(x^2-6x+9)=0
x(x-3)^2=0
x=0 or x=3
5,5x^2-4(x^2-2x+1)+20=0
5x^2-4x^2+8x-4+20=0
x^2+8x+16=0
(x+4)^2=0
x=-4
6,5x(x-3)+7x-21=0
5x(x-3)+7(x-3)=0
(5x+7)(x-3)=0
5x-7=0 or x-3=0
x=7/5 or x=3
7,2x^3-50x=0
2x(x^2-25)=0
2x(x-5)(x+5)=0
x=0 or x=5 or x=-5
8,(4x-1)^2-9(x+3)^2=0
(4x-1)^2-3^2*(x+3)^2=0
(4x-1)^2-(3x+9)^2=0
(4x-1-3x-9)(4x-1+3x+9)=0
(x-10)(7x+8)=0
x=10 or x=-8/7
9,3(x-2)^2-x+2=0
3*(x-2)*(x-2)-(x-2)=0
(3x-6)(x-2)-(x-2)=0
(x-2)(3x-6-1)=0
(x-2)(3x-7)=0
x=2 or x=7/3
10,9x^2+6x-8=0
9x^2+12x-6x-8=0
3x(3x-2)+4(3x-2)=0
(3x+4)(3x-2)=0
3x+4=0 or 3x-2=0
x=-4/3 or x=2/3
1) x2 - 7x = 0
=> x(x - 7) = 0
=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
2) -3x2 + 5x = 0
=> x(-3x + 5) = 0
=> \(\orbr{\begin{cases}x=0\\-3x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)
3) x2 - 19x - 20 = 0
=> x2 - 20x + x - 20 = 0
=> x(x - 20) + (x - 20) = 0
=> (x + 1)(x - 20) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-20=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=20\end{cases}}\)
4) x2 - 5x - 24 = 0
=> x2 - 8x + 3x - 24 = 0
=> x(x - 8) + 3(x - 8) = 0
=> (x + 3)(x - 8) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
1) x2 - 7x = 0
<=> x( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
2) -3x2 + 5x = 0
<=> x( -3x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)
3) x2 - 19x - 20 = 0
<=> x2 + x - 20x - 20 = 0
<=> x( x + 1 ) - 20( x + 1 ) = 0
<=> ( x - 20 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x=20\\x=-1\end{cases}}\)
4) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x( x + 3 ) - 8( x + 3 ) = 0
<=> ( x - 8 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=8\\x=-3\end{cases}}\)
(x2 + x + 1)(6 - 2x) = 0
<=> 6 - 2x = 0 (do x2 + x + 1 > 0)
<=> 2x = 6
<=> x = 3
Vậy S = {3}
(8x - 4)(x2 + 2x + 2) = 0
<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)
<=> 8x = 4
<=> x = 1/2
Vậy S = {1/2}
x3 - 7x + 6 = 0
<=> x3 - x - 6x + 6 = 0
<=> x(x2 - 1) - 6(x - 1) = 0
<=> x(x - 1)(x + 1) - 6(x - 1) = 0
<=> (x2 + x - 6)(x - 1) = 0
<=> (x2 + 3x - 2x - 6)(x - 1) = 0
<=> (x + 3)(x - 2)(x - 1) = 0
<=> x + 3 = 0
hoặc x - 2 = 0
hoặc x - 1 = 0
<=> x = -3
hoặc x = 2
hoặc x = 1
Vậy S = {-3; 1; 2}
x5 - 5x3 + 4x = 0
<=> x(x4 - 5x2 + 4) = 0
<=> x(x4 - x2 - 4x2 + 4) = 0
<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0
<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0
<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1
Vậy S = {-2; -1; 0; 1; 2}
+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
- Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
\(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)
Vậy \(S=\left\{3\right\}\)
+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
- Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)
- Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
\(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
+ Ta có: \(x^3-7x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)
Vậy \(S=\left\{-3;1;2\right\}\)
+ Ta có: \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)
\(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow x=0\left(TM\right)\)
hoặc \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)
hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)
Vậy \(S=\left\{-2;-1;0;1;2\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
a ) \(\left(5x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{5}\\x=7\end{matrix}\right.\)
b ) \(\left(x^2-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-3\end{matrix}\right.\)
c )\(x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
d ) \(x^2+x-12=0\)
\(\Leftrightarrow x^2-4x+3x-12\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
e ) \(15\left(x+9\right)\left(x-3\right)\left(x+21\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=3\\x=-21\end{matrix}\right.\)
g ) \(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-2\end{matrix}\right.\)
i ) \(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\)
\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^3-x^2+x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\\x=-3\end{matrix}\right.\)
h) \(x^2+5x+6=0\)
\(\Leftrightarrow x^2+3x+2x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
\(a,x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(b,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)\)\(=\left(x-1\right)\left(x+6\right)\)
\(c,5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\) \(e,x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)\(f,x^2-2x-3=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)\)\(h,2x^2+5x-3=0\Leftrightarrow2x^2-6x+x-3=0\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\left(x+1\right)x=0\)
\(\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)vậy.....
\(x\left(x-5\right)^2-4x+20=0\)
\(x\left(x-5\right)^2-4\left(x-5\right)=0\)
\(\left(x-5\right)\left[x\left(x-5\right)-4\right]=0\)
\(\left(x-5\right)\left(x^2-5x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-5x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-0,7015621187\end{cases}}}\)vậy.........
\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7\left(x+6\right)=0\)
\(\left(x+6\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}}\) vậy....
\(x^3-5x^2+x-5=0\)
\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x^2=-1\Rightarrow x\in\Phi\end{cases}}}\)vậy........
\(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^3+10x\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)vậy..............
nhớ chọn mk nha
1. \(x^2\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\Rightarrow x=-1\)
2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right).7x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
3.
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
4.
\(x^2-x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(x^2-5x+6=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x^2-2x-3x+6=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x\cdot\left(x-2\right)-3\cdot\left(x+2\right)=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \left(x-3\right)\cdot\left(x-2\right)=0\Rightarrow x\in\left(2,3\right)\)
\(x^2-7x+12=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x^2-3x-4x+12=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x\cdot\left(x-3\right)-4\left(x-3\right)=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \left(x-4\right)\cdot\left(x-3\right)=0\Rightarrow x\in\left(3,4\right)\)
\(x^2+x-20=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x^2+5x-4x-20=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x\cdot\left(x+5\right)-4\cdot\left(x+5\right)=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \left(x-4\right)\cdot\left(x+5\right)=0\Rightarrow x\in\left(4,-5\right)\)
câu 4 mk chịu
\(1.x^2-5x+6=0\\ x^2-2x-3x+6=0\\ \left(x^2-2x\right)+\left(-3x+6\right)=0\\ x\left(x-2\right)-3\left(x-2\right)=0\\ \left(x-2\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(2.x^2-7x+12=0\\ x^2-3x-4x+12=0\\ \left(x^2-4x\right)+\left(-3x+12\right)=0\\ x\left(x-4\right)-3\left(x-4\right)=0\\ \left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
\(3.x^2+x-20=0\\ x^2-4x+5x-20=0\\ \left(x^2-4x\right)+\left(5x-20\right)=0\\ x\left(x-4\right)+5\left(x-4\right)=0\\ \left(x-4\right)\left(x+5\right)=0\\ \left[{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
câu 4 mik nghĩ là đề sai