Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A =\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}\)
=> A > \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+.....+\frac{1}{\sqrt{n}}\)
=> A > \(\frac{1}{\sqrt{n}}.n\)
=> A > \(\sqrt{n}\)
=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)(Đpcm)
Bạn tham khảo tại đây nha!!
https://olm.vn/hoi-dap/detail/105992780559.html
Học tốt!!
\(Sn=1-1+1-\frac{1}{2^2}+1-\frac{1}{3}^2+...+1-\frac{1}{n^2}=n-\left(1+\frac{1}{2^2}+...+\frac{1}{n^2}\right)< n\)(1)
\(Sn>n-\left[\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n+1\right).n}\right]=n-\left(1-\frac{1}{n+1}\right)=n-1+\frac{1}{n+1}>n-1\)(2)
từ (1) và (2) => n-1<Sn<n => Sn k là số nguyên
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left(3^n.10\right)-\left(2^n.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
\(=\left(3^n-2^{n-1}\right).10⋮10\)
Tương tự nhé
\(CMR:\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)
ta có
\(\frac{1}{n+k}+\frac{1}{n+\left(n+1-k\right)}< \frac{3}{2n}\)
\(\Leftrightarrow3k^2< 3nk+n+3k\)luôn đúng zới zới k=1,2,...,n
zới \(k=1,=>\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)
\(zới\left(k=2,=>\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\right)\)
zới \(k=n,=>\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)
cộng theo từng zế của bất đẳng thức trên ta đc
\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+1n}\right)< \frac{3}{2n}+\frac{3}{2n}+..+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)
\(=>\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\left(dpcm\right)\)
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)
\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)
Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{n}\)
\(\Rightarrow\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \left(n-1\right)-\left(1-\frac{1}{n}\right)\)> n - 2
Vậy S không là số tự nhiên
a/ \(\frac{1}{n\left(n-1\right)\left(n+1\right)}=\frac{1}{n^3-n}>\frac{1}{n^3}\)
b/ \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n^3+3n^2+2n}< \frac{1}{n^3}\)
c/ Ap dụng câu b ta được
\(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2006^3}>\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2006.2007.2008}\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2006.2007}-\frac{1}{2007.2008}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{2007.2008}\right)>\frac{1}{12}>\frac{1}{15}\)