K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2016

Để n+ 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6

Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4

Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6

Vậy biểu thức chia hết cho 24

22 tháng 3 2023

Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6

 

Ta có 

4

+

2

3

2

2

=

2

(

2

1

)

+

2

(

2

1

)

4

 +2n 

3

 −n 

2

 −2n=n 

2

 (n 

2

 −1)+2n(n 

2

 −1)

 

=

(

2

1

)

(

2

+

2

)

=

(

1

)

(

+

1

)

(

+

2

)

=(n 

2

 −1)(n 

2

 +2)=(n−1)n(n+1)(n+2)

 

Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4

 

Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6

 

Vậy biểu thức chia hết cho 24

 

 Đúng ko nek

14 tháng 10 2016

\(=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)

(Đặt thừa số chung nhẩm nghiệm đa thức bậc 2 có 1 nghiệm là -1, thực hiện phép chia đa thức bậc 2 cho n+1)

\(=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)

Ta nhận thấy n(n+1)(n+2) và (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp bao giờ cũng có ít nhất 1 số chẵn => hai tích trên chia hết cho 2 => Tổng 2 tích trên chia hết cho 2 nên đa thức đã cho chia hết cho 2

Chứng minh bài toán phụ 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3:

Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2

+ Nếu a chia hết cho 3 thì bài toán đúng

+ Nếu a chia 3 dư 1 thì a=3k+1 => a+2 = 3k+1+2=3k+3 chia hết cho 3

+ Nếu a chia 3 dư 2 thì a=3k+2 => a+1=3k+2+1=3k+3 chia hết cho 3

=> 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

Áp dụng vào bài toán thì 2 tích trên chia hết cho 3 => tổng 2 tích chia hết cho 3 nên đa thức đã cho chia hết cho 3

Đa thức đã cho đồng thời chia hết cho cả 2 và 3 nên chia hết cho 2.3=6

14 tháng 10 2016

xin lỗi nha, bạn giải hình như là cách lớp lớn, mình chẳng hiểu gì hết. Sorry nhưng mình không chọn bạn được, xin lỗi nha!!!

8 tháng 9 2015

vào câu hỏi tương tự

tick nha

 

27 tháng 12 2016

4n+2 -3n+2 - 4n - 3n 

= 4n+2 - 4n - 3n+2 - 3n 

= 4n ( 42 - 1 ) - 3n ( 32 + 1 )

= 4n .15 - 3n.10

= 4n-1.4.15 - 3n-1.3.10

= 4n-1.60 - 3n-1.30

= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )

14 tháng 2 2018

\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)

\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)

\(=6.3^{n+1}+6.2^{n+1}\)

\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)