\(\frac{a}{b}=\frac{c}{d}\).Chứng tỏ:

\(\left(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

10 tháng 11 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{\left(bk\right)^2-b^2}{kb^2}=\frac{\left(dk\right)^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2.k^2-b^2}{kb^2}=\frac{d^2.k^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2\left(k^2-1\right)}{kb^2}=\frac{d^2\left(k^2-1\right)}{kd^2}\)

\(\Rightarrow\frac{k^2-1}{k}=\frac{k^2-1}{k}\left(đpcm\right)\)

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)

mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{2a^2}{2c^2}=\frac{3b^2}{3d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{2a^2}{2c^2}=\frac{3b^2}{3d^2}=\frac{2a^2-3b^2}{2c^2-3d^2}\)(1)

\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(2)

từ (1) và (2) => đpcm

Ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\left(\frac{a+c}{b+d}\right)^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\left(đpcm\right)\)

7 tháng 3 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Lại có: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)

Tương tự: \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\)

=> đpcm

7 tháng 3 2018

Mình sẽ k cho người đúng và nhanh nhất!

30 tháng 7 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(=\left(\frac{a+c}{b+d}\right)^2\)

Mà \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}\)

Vậy \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)

30 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

     \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2-a^2-2ac-c^2}{b^2+d^2-b^2-2bd-d^2}=\frac{-2ac}{-2bd}=\frac{ac}{bd}\)

=>Đpcm

 

29 tháng 10 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) ,ta có:

\(a=bk,c=dk\)

\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)

      \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) suy ra:

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)(đpcm)

29 tháng 10 2018

Đặt \({a}/{b}={c}/{d}=k \) => a =bk ; c =dk

Thay vào vế trái là \({ab}/{cd}\)  và vế phải là \({(a+b)^2}/{(c+d)^2}\) sẽ đc 2 vế bằng nhau 

=> điều phải CM

17 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=> \(\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)

=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b=d\right)^2}\left(đpcm\right)\)