Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/2(9x2+6x+1)=(3x+1)(x-2)
⇔2(3x+1)2= (3x+1)(x-2)
⇔ 2(3x+1)2 :(3x+1)=x-2
⇔ 2(3x+1)=x-2
⇔6x+2-x+2=0
⇔5x+4=0
⇔5x=-4
⇔x=\(\frac{-4}{5}\)
b/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
⇔\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
⇔12=(1-3x)2-(1+3x)2
⇔-(1-3x-1-3x)(1-3x+1+3x)=--12
⇔-(-6x.2)=-12
⇔12x=-12
⇔x=-1
bạn thấy mình làm sai hay thiếu thì bạn nhớ nhắc mình nha.
a) \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow\)\(2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(5x+4\right)=0\)
đến đây tự lm nha
b) \(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\) (1)
ĐKXĐ: \(x\ne\pm\frac{1}{3}\)
\(\left(1\right)\)\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Rightarrow\)\(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)
\(\Leftrightarrow\)\(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)
\(\Leftrightarrow\)\(-12x=12\)
\(\Leftrightarrow\)\(x=-1\) (t/m ĐKXĐ)
Vậy....
a) \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-\frac{4}{5}\end{cases}}}\)
b) ĐKXĐ: \(x\ne\pm\frac{1}{3}\)
\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
\(\Leftrightarrow\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Leftrightarrow\left(1-3x\right)^2-\left(1+3x\right)^2=12\)
\(\Leftrightarrow\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)
\(\Leftrightarrow-12x=12\)
\(\Leftrightarrow x=-1\) (thỏa mãn)
Vậy x = -1
Bài 1.
\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)
Bài 2.
\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)
ĐK: \(x\ne2\)
\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)
ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)
\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)
a.\(\left(3x-1\right)\left(9x^2+3x+1\right)+\left(1-3x\right)^3-3x\left(9x-3\right)-\left(x+2\right)^3+x\left(x^2+6x+12\right)\)\(=27x^3-1+1^3-9x+27x^2-27x^3-27x^2+9x-x^3-6x^2-12x-8+x^3+6x^2+12x\)\(=\left(27x^3+1^3-27x^3-x^3+x^3\right)+\left(27x^2-27x^2-6x^2+6x^2\right)+\left(-9x+9x-12x+12x\right)+\left(-1-8\right)\)\(=1-9=8\)
b.
\(\left(2x-3\right)\left(x-2\right)\left(x+2\right)-2\left(x+3\right)^3-\left(x-4\right)^3+\left(x-3\right)\left(x^2+3x+9\right)+9x^2+110x\)\(=\left(2x-3\right)\left(x^2-4\right)-2\left(x^3+9x^2+27x\right)-\left(x^3-12x^2+48x-64\right)+x^3-27+9x^2+110x\)\(=2x^3-8x-3x^2+1-2x^3-18x^2-54x-x^3+12x^2-48x+64+x^3-27+9x^2+110x\)\(=\left(2x^3-2x^3-x^3+x^3\right)+\left(-3x^2-18x^2+2x^2+9x^2\right)+\left(-8x-54x-48x+110x\right)+\left(1+64-27\right)\)\(=38\)
\(\text{a) 7-2x=22-9x}\)
\(\Leftrightarrow\text{7-2x-22+9x=0}\)
\(\Leftrightarrow-15+7x=0\)
\(\Leftrightarrow7x=15\)
\(\Leftrightarrow x=\frac{15}{7}\)
Học tốt
#Thảo Vy#
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
\(a,x^3+3x^2=4x+12\)
\(x^2\left(x+3\right)=4\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)
\(b,49x^2=\left(3x+2\right)^2\)
\(7x=3x+2\)
\(\Rightarrow7x-3x=2\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
các câu còn lại tương tự nha
\(a,x^3+3x^2=4x+12\)
\(x^3+3x^2-4x-12=0\)
\(\Rightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\\left(x+2\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)
\(b,49x^2=\left(3x+2\right)^2\)
\(\Rightarrow\left(7x\right)^2=\left(3x+2\right)^2\)
\(\Rightarrow7x=3x+2\)
\(\Rightarrow7x-3x=2\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
\(c,3x^2\left(x-5\right)+12\left(5-x\right)=0\)
\(3x^2\left(x-5\right)-12\left(x-5\right)=0\)
\(\left(x-5\right)\left(3x^2-12\right)=0\)
\(\Rightarrow3.\left(x-5\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}}\)
\(d,x^2\left(x-5\right)+45-9x=0\)
\(x^2\left(x-5\right)+9\left(5-x\right)=0\)
\(x^2\left(x-5\right)-9\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
a) 9x2 - 1 = (3x + 1)(2x - 3)
=> 9x2 - 1 = 6x2 - 9x + 2x - 3
=> 9x2 - 6x2 + 7x - 1 + 3 = 0
=> 3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=>\(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
b) 2(9x2 + 6x + 1) = (3x + 1)(x - 2)
=> 2(3x + 1)2 - (3x + 1)(x - 2) = 0
=> (3x + 1)(6x + 2 - x + 2) = 0
=> (3x + 1)(5x +4 ) = 0
=> \(\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}\)
c) 27x2(x + 3) - 12(x2 + 3x) = 0
=> 27x2(x + 3) - 12x(x + 3) = 0
=> 3x(9x - 4)(x + 3) = 0
=> 3x = 0
9x - 4 = 0
x + 3 = 0
=> x = 0
x = 4/9
x = -3
d) 16x2 - 8x + 1 = 4(x + 3)(4x - 1)
=> (4x - 1)2 - 4(x + 3)(4x - 1) = 0
=> (4x - 1)(4x - 1 - 4x - 12) = 0
=> 4x - 1 = 0
=> x = 1/4
\(-3x^2-9x+12=3\Leftrightarrow-3x^2-9x+9=0\)
\(\Leftrightarrow-3\left(x^2+3x-3\right)=0\)
\(\Leftrightarrow x^2+3x-3=0\Leftrightarrow x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}-3=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{21}{4}=0\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\left(\frac{\sqrt{21}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}-\frac{\sqrt{21}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{21}}{2}\right)=0\)
\(\Leftrightarrow\left(x+\frac{3-\sqrt{21}}{2}\right)\left(x+\frac{3+\sqrt{21}}{2}\right)=0\Leftrightarrow x=-\frac{3\pm\sqrt{21}}{2}\)