Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(4x - 1)2(2x - 1)= 3/2
<=>(16x2 - 8x + 1)( 2x2 - x)= 3/2
<=>(16x2 - 8x + 1)( 16x2 - 8x)= 12
Đặt 16x2 - 8x= y, ta có phương trình:
(y + 1) . y= 12
<=>y2 + y - 12=0
<=>y2 + 4x - 3x - 12=0
<=>y(y + 4) - 3(x + 4)=0
<=>(y + 4)(y - 3)=0
Đến đây tự làm tiếp nha.
x(4x-1)^2(2x+1)=3/2
<=>8x(4x-1)^2(2x-1)=8.3/2
<=>(16x^2-8x+1)(16x^2-8x)=12 (1)
đặt 16x^2-8x=y ta có
(y+1)y=12
<=>y^2+y-12=0
<=>y^2-3y+4y-12=0
<=>y(y-3)+4(y-3)=0
<=>(y-3)(y+4)=0
thay y=x^2+8x rồi giải phương trình
#Lười gõ phần sau
x(4x - 1)2(2x - 1)= 3/2
<=>(2x2 - x)(16x2 - 8x +1)= 3/2
<=>(16x2 - 8x)(16x2 - 8x + 1)= 12
Đặt 16x2 - 8x= y, ta được
y(y+ 1)=12
<=> y2 + y - 12=0
<=> y2 - 3y + 4y - 12=0
<=> y(y - 3) + 4(y - 3)=0
<=>(y - 3)(y + 4)=0
Đến đây tự làm nha
Nếu chơi lmht thì kb vs mk
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18=0\)
\(\Leftrightarrow\left[4\left(x^2+2x\right)+3\right]\left(x^2+2x+1\right)-18=0\)
Đặt \(t=x^2+2x\)ta có
\(\left(4t+3\right)\left(t+1\right)-18=0\)
\(\Leftrightarrow4t^2+7x-15=0\)
\(\Leftrightarrow4t^2+12t-5t-15=0\)
\(\Leftrightarrow4t\left(t+3\right)-5\left(t+3\right)=0\)
\(\Leftrightarrow\left(t+3\right)\left(4t-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+3=0\\4t-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-3\\t=\frac{5}{4}\end{cases}}}\)
Nếu \(t=-3\Rightarrow x^2+2x=-3\)
\(\Leftrightarrow x^2+2x+3=0\)
\(\Rightarrow\)x vô nghiệm vì \(x^2+2x+3>0\)với mọi x
Nếu \(t=\frac{5}{4}\Rightarrow x^2+2x=\frac{5}{4}\)
\(\Leftrightarrow x^2+2x-\frac{5}{4}=0\)
\(\Leftrightarrow4x^2+8x-5=0\)
\(\Leftrightarrow4x^2-2x+10x-5=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}}\)
Vậy \(S=\left\{-\frac{5}{2};\frac{1}{2}\right\}\)
P/s tham khảo nha
a,Ta có D= (1/3+2x+1/3-2x):1/3+2x
=2/3:1/3+2x
=2+2x
=2(x+1)
b, Từ câu a ta có
D=2(x+1)
Với x=3
=>2(x+1)
=2.4=8
KL
a,Ta có D= (1/3+2x+1/3-2x):1/3+2x
=2/3:1/3+2x
=2+2x
=2(x+1)
b, Từ câu a ta có
D=2(x+1)
Với x=3
=>2(x+1)
=2.4=8
<=>0,5x(x-3)-(x-3)(1,5x-1)=0
<=>(x-3)[0,5x-(1,5x-1)]=0
<=>(x-3)[0,5-1,5x+1]=0
<=>(x-3)(2x+1)=0
<=>x-3=0
<=>2x+1=0
<=>x=3
<=>2x=-1
<=>x=3
<=>x=\(\frac{-1}{2}\)
2(x+4)(x-3)=0
=> (x+4)(x-3)=0
TH1: x+4=0 => x=-4
TH2: x-3=0=> x=3
vậy pt có nghiệm là ; -4;3
b) (x-1)2(3x-1)=0
TH1: x-1=0 => x=1
TH2:3x-1=0=>3x=1=>x=1/3
vậy pt có nghiệm là: 1;1/3
c) (2x/3 + 4)(2x-3) (x/2-1)=0
=> TH1: 2x/3 +4=0 => 2x/3 =-4 => 2x=-12 => x=-6
TH2: 2x-3=0 => 2x=3=>x=3/2
TH3:x/2 -1 =0 => x/2=1 => x=2
vậy pt có nghiệm là : -6;3/2;2
a, 2(x+4)(x-3)=0
(x+4)(x+3)=0
x+4=0 hoặc x+3=0
x=-4 hoặc x=-3
b,(x-1)^2(3x-1)=0
x-1=0 hoặc 3x-1=0
x=1 hoặc x=1/3
c,(2x/3+4)(2x-3)(x/2-1)=0
2x/3+4=0 hoặc 2x-3=0 hoặc x/2-1=0
x=6 hoặc x=3/2 hoặc x=2
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x+28=28\)
\(\Leftrightarrow3x^2+26x=0\)\(\Leftrightarrow x\left(3x+26\right)=0\)
Suy ra x=0 hoặc x=-26/3
a) Ta có :
\(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow\)\(2x-5=3\left(x+5\right)\)
\(\Leftrightarrow\)\(2x-5=3x+15\)
\(\Leftrightarrow\)\(3x-2x=-5-15\)
\(\Leftrightarrow\)\(x=-20\)
Vậy \(x=-20\)
b) Ta có :
\(\frac{5}{3x+2}=2x-1\)
\(\Leftrightarrow\)\(5=\left(2x-1\right)\left(3x+2\right)\)
\(\Leftrightarrow\)\(5=3x\left(2x-1\right)+2\left(2x-1\right)\)
\(\Leftrightarrow\)\(5=6x^2-3x+4x-2\)
\(\Leftrightarrow\)\(6x^2+x=7\)
\(\Leftrightarrow\)\(x\left(6x+1\right)=7\)
TRƯỜNG HỢP 1 :
\(\hept{\begin{cases}x=1\\6x+1=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\6x=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=1\end{cases}}}\)
TRƯỜNG HỢP 2 :
\(\hept{\begin{cases}x=-1\\6x+1=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\6x=-8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}}\)( LOẠI )
Vậy \(x=1\)
Ta có: |-2x +1| = -2x+1 khi -2x+1 ≥ 0 hay x ≤ \(\dfrac{1}{2}\)
|-2x +1| = - ( -2x+1) = 2x-1 khi -2x +1 < 0 hay x > \(\dfrac{1}{2}\)
Với x ≤ \(\dfrac{1}{2}\) ta có phương trình:
-2x+1 = x + 3
-2x - x = 3 - 1
-3x = 2
x = \(\dfrac{-2}{3}\) ( nhận)
Với x > \(\dfrac{1}{2}\) ta có phương trình:
2x-1 = x + 3
2x - x = 3+1
x = 4 (nhận)
Vậy phương trình có tập nghiệm S = {\(\dfrac{-2}{3};\) 4 }