Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:1)
\(f\left(x\right)=x+7x^2-6x^3+3x^4+2x^2+6x-2x^4+1\\ =7x+9x^2+x^4-6x^3+1\)
Sắp xếp: \(x^4-6x^3+9x^2+7x+1\)
2) bậc đa thức : 4
hệ số tự do : 1
hệ số cao nhất : 9
3) \(f\left(-1\right)=x^4-6x^3+9x^2+7x+1\\ =\left(-1\right)^4-6.\left(-1\right)^3+9.\left(-1\right)^2+7.\left(-1\right)+1\\ =1-\left(-6\right)+9+\left(-7\right)+1=10\)
mấy câu kia tương tự
Bài 2:
1. \(P=A+B\\
=5x^2-3xy+7y^2+6x^2-8xy+9y^2\\
=11x^2-11xy+16y^2\)
\(Q=A-B\\ =5x^2-3xy+7y^2-\left(6x^2-8xy+9y^2\right)\\ =5x^2-3xy+7y^2-6x^2+8xy-9y^2\\ =-x^2+5xy-2y^2\)
2. \(M=P-Q\\
=11x^2-11xy+16y^2-\left(-x^2+5xy-2y^2\right)\\
=11x^2-11xy+16y^2+x^2-5xy+2y^2\\
=12x^2-16xy+18y^2
\)
Thay x=-1 và y=-2 có:
\(12x^2-16xy+18y^2\\ =12.\left(-1\right)^2-16.\left(-1\right).\left(-2\right)+18.\left(-2\right)^2=52\)
3.\(T=M-N\\
=12x^2-16xy+18y^2-3x^2+16xy-14y^2\\
=9x^2+4y^2\)
Ta có : 9x2 >0 và 4y2 >0 => T>0
=> T luôn nhận giá trị dương với mọi giá trị x, y
a) P(x)=3x2 - 5x3 +x + 2x3 - x - 4 + 3x3 + x4 + 7
= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7
= 3x2 + 0 + 0 + x4 + 3
= 3x2 + x4 + 3
b) Vì x2 > hoặc = 0 vs mọi x thuộc R
=)) 3x2 > hoặc = 3 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > hoặc = x4 + 6 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > 0
Vậy đa thức 3x2 + x4 + 3 vô nghiệm
2 thieu đề
Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x2 > 0 hoặc 3x2 = 0 vì x2 có thể = 0 được. VÌ vậy nếu bạn bảo 3x2 >/= 3 là sai
Mình viết tắt bạn viết đầy đủ nha:
a,\(\dfrac{-1}{4}\)a5b4x5y6.Phần hệ số là:\(\dfrac{-1}{4}\)a5b4
Phần biến là:x5y6.
b, bậc của đơn thức A là bậc 11
a,\(\left(-3x^2y^5\right)\left(2xy^2\right)\)
\(=\left(-3.2\right)\left(x^2.x\right)\left(y^5.y^2\right)\)
\(=-6x^3y^7\)
b,Hệ số:-6
biến:x,y
bậc :10
c,Khi x=2;y=-1
\(A=-6.2^3.\left(-1\right)^7\)
\(=48\)
Bài 1
số số hạng là
(99-1) : 1 + 1 = 99 ( số )
tỏng là
(99+1) x 99 : 2= 4950
đap số 4950
mấy câu sau tự làm ngại làm lắm ok
Lớp 7 mà bị hỏi bài 9 thì anh thấy quá khó rồi đó.
Gọi \(A\) là số học sinh của lớp. \(A\) chia 5 dư 3 nên \(9A\) chia 5 dư 2.
(CM: \(A=5k+3\Rightarrow9A=45k+27=5\left(9k+5\right)+2\)).
Tương tự, \(A\) chia 7 dư 1 nên \(9A\) chia 7 dư 2.
Vậy \(9A-2\) vừa chia hết cho 5 vừa chia hết cho 7 nên \(9A-2⋮35\).
Do \(40\le A\le60\) nên \(A=43\) thoả, mấy cái còn lại không thoả.