Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để giải bài tập này thì em chú ý đến hiện tượng như sau: Ban đầu thì điện tích chuyển động với vận tốc v cùng hướng với đường sức và lúc này electron chịu tác dụng của lực điện ngược chiều điện trường => Đến vị trí A nào đó điện tích sẽ có vận tốc = 0. Và lực điện kéo điện tích lại vị trí ban đầu O.
O A v q<0 E F
Gai đoạn 1 (O-A): AD Định lí biến thiên động năng:
\(\frac{1}{2}mv^2_2-\frac{1}{2}mv^2=A_F=qEd\)
\(\Rightarrow0-\frac{1}{2}mv^2=-1,6.10^{-19}.182.d\Rightarrow d=0,16m\) với \(m_e=9,1.10^{-31}kg;v=3200000\)m/s.
\(v^2-v_1^2=2aS\Rightarrow a=0^2-\frac{\left(32.10^5\right)^2}{2S}=-3,8.10^{13}\) m/s^2
\(\Rightarrow v=v_0+at\Rightarrow t=8,42.10^8s\)
Giai đoạn 2(A-O): Tương tự \(t_2=t_1\)
Vậy thời gian để e trở lại vị trí ban đầu là \(t=1,68.10^7s\)
Tổng thời gian đi là t(h)
Tổng quãng đường đi là S(km)
Quãng đường vật đi được trong \(\dfrac{1}{3}\)thời gian đầu là
S1=\(\dfrac{1}{3}t.30\)=10t
1/3 quãng đường còn lại là S2=\(\dfrac{1}{3}\)(S-10t)
Thời gian vật đi hết 1/3 quãng đường còn lại là
t2=\(\dfrac{S-10t}{135}\)
Quãng đường còn lại là S3=S-10t-\(\dfrac{1}{3}(S-10t)\)=\(\dfrac{2}{3}(S-10t)\)
Thời gian đi quãng đường cuối là
t3=\(\dfrac{S-10t}{90}\)
Vận tốc trung bình trên cả quãng đường là
vtb=\(\dfrac{S}{t1+t2+t3}\)
t1+t2+t3=t
t/3+\(\dfrac{S-10t}{135}+\dfrac{S-10t}{90}=t\)
giải ra được S=46t
=>vtb=46(km/h)
Từ thông cực đại: \(\phi_0=N.B.S = 2000.10^{-2}.0,2^2=0,8Wb\)
t = 0 chọn lúc mặt phẳng khung dây vuông góc với đường sức, có nghĩa véc tơ pháp tuyến của khung trùng với đường sức
\(\Rightarrow \varphi =0\)
Vậy biểu thức từ thông: \(\phi=0,8.\cos(100\pi t)(Wb)\)
câu 1
giải
suất điện động cảm ứng
\(e_c=r.i=5.2=10V\)
mặt khác: \(e_c=\left|\frac{\Delta\Phi}{\Delta t}\right|=\frac{\Delta B}{\Delta t}.S\)
suy ra : \(\frac{\Delta B}{\Delta t}=\frac{e_c}{S}=\frac{10}{0,1^2}=10^3T/s\)
\(L=12cm\Rightarrow A=\dfrac{L}{2}=6cm\)
Chu kì dao động: \(T=\dfrac{62,8}{20}=3,14s\approx\pi\left(s\right)\Rightarrow\omega=\dfrac{2\pi}{T}=2\)
Áp dụng pt độc lập: \(x^2+\dfrac{v^2}{\omega^2}=A^2\)
\(\Rightarrow\left(-2\right)^2+\dfrac{v^2}{2^2}=6^2\Rightarrow v=\pm8\sqrt{2}\left(cm/s\right)=\pm0,08\sqrt{2}\left(m/s\right)\)
Mà vật đang chuyển động the chiều dương: \(v=0,08\sqrt{2}\left(m/s\right)\)
Gia tốc vật:
\(a=-\omega^2x=-2^2\cdot\left(-2\right)=8cm/s^2\)