K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

13 tháng 6 2017

Từ \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\)\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\)

bài này tui làm rồi ở đây

16 tháng 2 2018

Bao nhiêu công gõ bài xong rồi đi chơi, chơi về định gửi bài, chơi về bật máy lên gửi thì lỗi, may vãi

16 tháng 2 2018

Ta có:

\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{2a\left(a+b+c\right)+2a^2+bc}\)

\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

\(=\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

Cần chứng minh \(\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)

\(\Leftrightarrow\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\ge1\)

Cauchy-Schwarz: \(VT=\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\)

\(=\dfrac{b^2c^2}{b^2c^2+2a^2bc}+\dfrac{c^2a^2}{c^2a^2+2ab^2c}+\dfrac{a^2b^2}{a^2b^2+2abc^2}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\) * Đúng*

Happy New Year (Lunar)

14 tháng 7 2017

đăng câu khác đi câu này nổi tiếng rồi

APMO 2005

15 tháng 7 2017

Nổi tiếng là sao

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

Áp dụng BĐT Cauchy ta có:

\(\frac{a^4}{b^3(c+a)}+\frac{c+a}{4a}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8b^3}}=\frac{3a}{2b}\)

\(\frac{b^4}{c^3(a+b)}+\frac{a+b}{4b}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8c^3}}=\frac{3b}{2c}\)

\(\frac{c^4}{a^3(b+c)}+\frac{b+c}{4c}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8a^3}}=\frac{3c}{2a}\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}+\frac{1}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})+\frac{9}{4}\geq \frac{3}{2}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})\)

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})-\frac{9}{4}\geq \frac{5}{4}.3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-\frac{9}{4}\)

hay \( \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Cách khác:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{(\frac{a^2}{b})^2}{b(c+a)}+\frac{(\frac{b^2}{c})^2}{c(a+b)}+\frac{(\frac{c^2}{a})^2}{a(b+c)}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{b(c+a)+c(a+b)+a(b+c)}\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)

\(\Rightarrow \left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2\geq (a+b+c)^2\)

Do đó: \(\text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)

Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)

Suy ra: \(\text{VT}\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}\) (đpcm)

16 tháng 7 2017

Áp dụng BĐT cauchy-schwarz:

\(VT=\sum\dfrac{a^4}{b^3\left(c+2a\right)}=\sum\dfrac{\dfrac{a^4}{b^2}}{b\left(c+2a\right)}\ge\dfrac{\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu = xảy ra khi a=b=c

5 tháng 12 2018

\(abc\le1\)

\(VT=\sum\dfrac{a^4}{2abc+a^2b}\ge\dfrac{\sum^2a^2}{6+\sum a^2b}\ge\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\)

Ta cần chứng minh :

\(\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\ge1\)

Đặt \(\sum a^2=t\left(t\ge3\right)\)

\(\Rightarrow\dfrac{t^2}{6+\sqrt{\dfrac{1}{3}t^3}}\ge1\Leftrightarrow t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge6\)

Thật vậy :

\(t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge3\sqrt{3}\left(\sqrt{3}-\dfrac{1}{\sqrt{3}}\right)=6\left(t\ge3\right)\)