Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên <=>2 chia hết cho n+1
hay n+1 thuộcƯ(2)
n+1=(-2;-1;1;2)
n=(-1;0;2;3)
a) Để A là phân số thì n+1 thuộc Z và n+1 khác 0
=> n khác -1, n thuộc Z thì A là phân số
b) Để A là số nguyên thì 2 chia hết cho n+1
=> n+1 thuộc 1;-1;2;-2
=> n thuộc 0;-2;1;-3
a, \(ĐK:\text{ }n-2\ne0\Leftrightarrow n\ne2\)
b, \(A=\frac{3}{n-2};\text{ }n=-2\)
\(\Rightarrow A=\frac{3}{-2-2}=\frac{3}{-4}\)
\(A=\frac{3}{n-2}\text{; }n=0\)
\(\Rightarrow A=\frac{3}{0-2}=\frac{3}{-2}\)
\(A=\frac{3}{n-2};\text{ }n=5\)
\(\Rightarrow A=\frac{3}{5-2}=\frac{3}{3}=1\)
c, \(A=\frac{3}{n-2}=1\Leftrightarrow n-2=\frac{3}{1}\)
\(\Rightarrow n-2=3\)
\(\Rightarrow n=3+2\)
\(\Rightarrow n=5\)
\(A=\frac{3}{n-2}=\frac{1}{2}\Leftrightarrow n-2=3:\frac{1}{2}\)
\(\Rightarrow n-2=6\)
\(\Rightarrow n=6+2\)
\(\Rightarrow n=8\)
d, \(A\inℤ\text{ }\Leftrightarrow\text{ }3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)
a)để A là phân số thì n-2 phải khác 0 =>n phải khác 2
b)+)n=-2
=>A=\(\frac{3}{-2-2}\)=\(\frac{3}{-4}\)
+)n=0
=>A=\(\frac{3}{0-2}=\frac{3}{-2}\)
+)n=5
=>A=\(\frac{3}{5-2}=\frac{3}{3}=1\)
c) theo như kết quả phần b thì để A=1 thì n phải =5
để A=\(\frac{1}{2}\)thì \(\frac{3}{n-2}=\frac{1}{2}\)=>\(\frac{3}{n-2}=\frac{3}{6}\)=>n-2=6=>n=6+2=>n=8
để A thuộc Z thì n-2 phải <0 =>n phải bé hơn 2 để n thuộc Z
a, Để a là phân số thì
\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)
b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)
Hay \(n+2\inƯ\left(5\right)\)
Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)
Vậy có các trường hợp :
n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 5 => n = 3
n + 2 = -5 => n = -7
Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
b. a=n+7/n-2 thuộc z nên n+7 chia hết cho n-2
n+7=n-2+9 chia hết cho n-2
n-2chia hết cho n-2 suy ra 9 chia hết cho n-2
vậy n-2 thuộc Ư(9)={+-1,+-3, +-9}
n-2=1suy ra n=3
n-2=-1suy ra n=1
n-2=3suy ra n=5
n-2=-3suy ra n=-1
n-2=9 suy ra n=11
n-2=-9 suy ra n=-7
vậy n thuộc{3, 1, 5, -1, 11, -7}nên a thuộc z
Ta có:\(A=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=1+\frac{7}{n-2}\)
\(\Rightarrow7⋮\left(n-2\right)\) hay \(n-2\inƯ\left(7\right)\)
Ư(7) là:[1,-1,7,-7]
Do đó ta được bảng sau:
Vậy để A nguyên thì n=-5;1;3;9
n + 5 n - 2 1 n - 2 7
\(A=\frac{n+5}{n-2}=1+\frac{7}{n-2}\)
Để \(1+\frac{7}{n-2}\in Z\Leftrightarrow\frac{7}{n-2}\in Z\)
=> n - 2 thuộc Ư(7) = { - 7; - 1; 1; 7 }
=> n = { - 5; 1; 3; 9 }
Vậy với n = { - 5; 1; 3; 9 } thì \(A=\frac{n+5}{n-2}\) thuộc Z