Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
\(\frac{\left(3x-1\right)(x+2)}{3}-\frac{2x^2+1}{2}=\frac{11}{2}\Leftrightarrow\frac{2\left(3x-1\right)\left(x+2\right)-3\left(2x^2+1\right)}{6}=\frac{33}{6}\)
\(\Leftrightarrow2\left(3x-1\right)\left(x+2\right)-3\left(2x^2+1\right)=33\)
\(\Leftrightarrow\left(6x^2+10x-4\right)-\left(6x^2+3\right)=33\)
\(\Leftrightarrow6x^2+10x-4-6x^2-3=33\)
\(\Leftrightarrow10x=33+4+3\)
\(\Leftrightarrow10x=40\)
\(\Leftrightarrow x=4\)
Phương trình có tập nghiệm \(S=\left\{4\right\}\).
a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> 1 - x + 3(x + 1) = 2x + 3
<=> 1 - x + 3x + 3 = 2x + 3
<=> 1 - x + 3x + 3 - 2x = 3
<=> 4 = 3 (vô lý)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)
<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30
<=> -x + 4x2 - 14 = 15x - 30
<=> x - 4x2 + 14 = 15x - 30
<=> x - 4x2 + 14 + 15x - 30 = 0
<=> 16x - 4x2 - 16 = 0
<=> 4(4x - x2 - 4) = 0
<=> -x2 + 4x - 4 = 0
<=> x2 - 4x + 4 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2 (ktm)
=> pt vô nghiệm
c) xem bài 4 ở đây: Câu hỏi của gjfkm
d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)
\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)
<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10
<=> 2x2 - 14 = 2x2 + x - 10
<=> 2x2 - 14 - 2x2 = x - 10
<=> -14 = x - 10
<=> -14 + 10 = x
<=> -4 = x
<=> x = -4
ĐKXĐ:\(x\ne1\)
\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
\(\Leftrightarrow\frac{x^2+x+1+2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow x^2+3x-1=3x^2\)\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(KTMĐK\right)\\x=\frac{1}{2}\left(TMĐK\right)\end{cases}}}\)
Vậy nghiệm của pt là \(x=\frac{1}{2}\)
\(pt\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)
\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow3x-1=2x^2\Leftrightarrow2x^2-3x+1=0\Leftrightarrow x^2-\frac{3}{2}x+\frac{1}{2}=0\)
đến đây là pt bậc 2
a, \(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)
\(\frac{12x}{12}-\frac{2\left(5x+2\right)}{12}=\frac{3\left(7-3x\right)}{12}\)
\(12x-10x-4=21-9x\)
\(11x=25\)
\(x=\frac{24}{11}\)
\(b,\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\frac{10x+3}{12}=\frac{15+8x}{9}\)
\(9\left(10x+3\right)=12\left(15+8x\right)\)
\(3\left(10x+3\right)=4\left(8x+15\right)\)
\(30x+9=32x+60\)
\(-2x=51\)
\(x=-\frac{51}{2}\)
\(c,\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\frac{2x}{6}-\frac{3\left(2x+1\right)}{6}=\frac{x-6x}{6}\)
\(2x-6x-3=x-6x\)
\(x=3\)
P/s: Bn xem lại đề bài phần d nha!
=.= hk tốt!!
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x=0
<=> x=0
Vậy x=0
+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)
\(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)
\(\Rightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x.\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{0,6\right\}\)
+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)
\(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)
\(\Leftrightarrow-2x^2+3x-1=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
Giải :
Ta có : \(x+\frac{1}{1+\frac{x+1}{x-2}}=x+\frac{x-2}{2x-1}=\frac{2\left(x^2-1\right)}{2x-1}\).
ĐKXĐ của phương trình là \(x\ne2,\:x\ne\frac{1}{2},\:x\ne\pm1,\:x\ne\frac{1}{3}\). Ta biến đổi phương trình đã cho thành \(\frac{2x-1}{x^2-1}=\frac{6}{3x-1}\). Khử mẫu và rút gọn :
\(\left(2x-1\right)\left(3x-1\right)=6\left(x^2-1\right)\Leftrightarrow-5x+1=-6\Leftrightarrow x=\frac{7}{5}\).
Giá trị \(x=\frac{7}{5}\) thoả mãn ĐKXĐ. Vậy nghiệm của phương trình là \(x=\frac{7}{5}\).