Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)
\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)
\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)
\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)
\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)
Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)
Ta có:\(A=\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{98}{99}\)
\(A< \dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{99}{100}\)
\(\Rightarrow A^2< \dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{98}{99}\cdot\dfrac{99}{100}\)
\(A^2< \dfrac{2}{100}=\dfrac{1}{50}\)
Mà \(\dfrac{1}{50}< \dfrac{1}{49}\)
\(\Rightarrow A^2< \dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{7}\left(đpcm\right)\)
A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)+\(\left(\dfrac{1}{6}-\dfrac{1}{7}\right)\)+...+\(\left(\dfrac{1}{98}-\dfrac{1}{99}\right)\)
Biểu thức trong dấu ngoặc thứ nhất bằng\(\dfrac{13}{60}\) nên lớn hơn \(\dfrac{12}{60}\),tức là lớn hơn 0,2,còn các dấu ngoặc sau đều dương,do đó A>0,2.
Để chứng minh A < \(\dfrac{2}{5}\),ta viết:
A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{8}\right)-...-\left(\dfrac{1}{97}-\dfrac{1}{98}\right)-\dfrac{1}{99}\)
Biểu thức trong dấu ngoặc thứ nhất nhỏ hơn \(\dfrac{2}{5}\),còn các dấu ngoặc đều dương,do đó A <\(\dfrac{2}{5}\)
Chúc bạn học giỏi!
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{98^2}+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)Mà \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)\(\Rightarrow A< 1\)
\(7A=\dfrac{7^{100}+14}{7^{100}+2}=1+\dfrac{12}{7^{100}+2}\)
\(7B=\dfrac{7^{99}+14}{7^{99}+2}=1+\dfrac{12}{7^{99}+2}\)
7^100+2>7^99+2
=>7A<7B
=>A<B
\(A=\dfrac{101\cdot\dfrac{102}{2}}{\left(101-100\right)+99-98+...+3-2+1}\)
\(=\dfrac{101\cdot51}{1+1+...+1}=\dfrac{101\cdot51}{51}=101\)
\(B=\dfrac{37\cdot43\left(101-101\right)}{2+4+...+100}=0\)
a, \(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
Ta có: \(T=101+100+99+98+...+3+2+1\) \(=\dfrac{\left(101+1\right).101}{2}\)
\(=\dfrac{102.101}{2}\Leftrightarrow51.101\)
\(M=101-100+99-98+...+3-2+1\)
Ta có: \(101:2=50\) (dư \(1\))
\(\Rightarrow M=\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\)
Có \(50\) dấu ngoặc tròn "\(\left(\right)\)"
\(\Rightarrow M=1+1+...+1+1=51.1=51\)
\(M\) có \(51\) số \(1\)
\(\Rightarrow A=\dfrac{T}{M}=\dfrac{51.101}{51}=101\)
Vậy \(A=101\)
b, \(B=\dfrac{3737.43-4343.37}{2+4+6+...100}\)
Ta có: \(T=3737.43-4343.37\)
\(T=37.101.43-43.101.37\)
\(T=0\)
\(\Rightarrow\) \(B=\dfrac{T}{2+4+6+...+100}=\dfrac{0}{2+4+6+...+100}\) \(=0\)
Vậy \(B=0\)
\(\dfrac{2}{3^2}< \dfrac{2}{1\cdot3}=1-\dfrac{1}{3}\)
\(\dfrac{2}{5^2}< \dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}\)
...
\(\dfrac{2}{99^2}< \dfrac{2}{97\cdot99}=\dfrac{1}{97}-\dfrac{1}{99}\)
Do đó: \(A=\dfrac{2}{3^2}+\dfrac{2}{5^2}+...+\dfrac{2}{99^2}< 1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
=>\(A< 1-\dfrac{1}{99}=\dfrac{98}{99}\)
\(\dfrac{2}{3^2}>\dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{5^2}>\dfrac{2}{5\cdot7}=\dfrac{1}{5}-\dfrac{1}{7}\)
...
\(\dfrac{2}{99^2}>\dfrac{2}{99\cdot101}=\dfrac{1}{99}-\dfrac{1}{101}\)
Do đó: \(A=\dfrac{2}{3^2}+\dfrac{2}{5^2}+...+\dfrac{2}{99^2}>\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
=>\(A>\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
=>\(\dfrac{98}{303}< A< \dfrac{98}{99}\)
Mình cảm ơn bạn Phước Thịnh nhé!