Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{1+x^2}-5^{1-x^2}>24\Leftrightarrow5\times5^{x^2}-\frac{5}{5^{x^2}}>24\) (1)
Đặt \(t=5^{x^2}\), dk: \(t>0\)
\(\left(1\right)\Leftrightarrow5t-\frac{5}{t}>24\Leftrightarrow5t^2-24t-5>0\Leftrightarrow\left[\begin{array}{nghiempt}t< \frac{-1}{5}\left(loai\right)\\t>5\end{array}\right.\)\(\Leftrightarrow5^{x^2}>5\Leftrightarrow x^2>1\Leftrightarrow\left[\begin{array}{nghiempt}x< -1\\x>1\end{array}\right.\)
Điều kiện. x≥1/3
Ta có:
2 x 3 + x 2 - 3 x + 1 = 2 ( 3 x - 1 ) 3 x - 1 ⇔ 2 x 3 + x 2 + 1 = 2 ( 3 x - 1 ) 3 + ( 3 x - 1 ) 2 + 1 f ( x ) = f ( 3 x - 1 )
Xét hàm số f(t) = 2t3+ t2+ 1 liên tục tên R.
Ta có: đạo hàm f’ (t) = 6t2+2t> 0 với t>0 .
Do đó ; hàm số f(t) đồng biến trên (0; +∞).
f ( x ) = f ( 3 x - 1 ) ⇔ x = 3 x - 1 ⇔ x 2 = 3 x - 1 ⇔ x = 3 - 5 2 > 1 3 x = 3 + 5 2 > 1 3
Tổng các nghiệm là 3.
Chọn C.
Chọn hệ trục tọa độ Oxyz sao cho A)0 ; 0 ; 0), B(1 ; 0 ; 0), D(0 ; 1; 0), A'(0 ; 0 ; 1)
Khi đó
B'(1 ; 0 ; 1), D'(0 ; 1 ; 1), C(1 ; 1 ; 0). Phương trình mặt phẳng (A'BD) có dạng:
x + y + z - 1 = 0. (1)
Ta tìm được phương trình mặt phẳng (B'D'C):
Vectơ: (0 ; -1 ; 1) ; (-1 ; 0 ; 1).
Mặt phẳng (B'D'C) qua điểm C và nhận = (-1 ; -1 ; -1 ) làm vectơ pháp tuyến. Phương trình mặt phẳng (B'D'C) có dạng:
x + y + z - 2 = 0 (2)
Ta có