K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{420}\right)=\frac{1}{2}.\frac{209}{420}=\frac{209}{840}\)

6 tháng 8 2015

=\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{21-19}{19.20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{420}\right)=\frac{1}{2}.\frac{209}{420}=\frac{209}{840}\)

27 tháng 4 2017

A= \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+ ... + \(\frac{1}{19.20.21}\)\(\frac{1}{4}\)

  = 1 - \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{2}\)-  \(\frac{1}{3}\)\(\frac{1}{4}\)+ ... + \(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\)

  = 1 - ( \(\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{2}-\frac{1}{3}\)) + ... + ( \(\frac{1}{19}-\frac{1}{20}+\frac{1}{19}-\frac{1}{20}\))  - \(\frac{1}{21}\)

  = 1 - \(\frac{1}{21}\)

  =  \(\frac{20}{21}\)<  \(\frac{1}{4}\)

=> Đề bài có sai ko bạn?

24 tháng 6 2017

\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right).x=5\)

\(\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{21-19}{19.20.21}\right).x=5\)

 \(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right).x=5\)

 \(\left(\frac{1}{1.2}-\frac{1}{20.21}\right).x=5\)

 \(\frac{209}{420}.x=5\)

\(\Rightarrow x=5\div\frac{209}{420}=\frac{2100}{209}\)

24 tháng 6 2017

\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right).x=5\)

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\right).2.x=5\)

\(\left(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{19.20}-\frac{1}{20.21}\right)\right).x.2=5\)

\(\left(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\right).x=5\div2\)

\(\left(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{20.21}\right)\right).x=2,5\)

\(\left(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{420}\right)\right).x=2,5\)

\(\left(\frac{1}{2}\times\frac{209}{420}\right)\times x=2,5\)

\(\frac{209}{840}\times x=2,5\)

\(x=2,5\div\frac{209}{840}=10\frac{10}{209}\)

6 tháng 7 2016

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

6 tháng 7 2016

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{1}{19800}\)

11 tháng 4 2019

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

14 tháng 7 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2004.2005.2006}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2004.2005}-\frac{1}{2005.2006}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2005.2006}\right)\)

\(=\frac{1}{4}-\frac{1}{2.2005.2006}\)

15 tháng 5 2019

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)

Đến đây tự tính được rồi:v

15 tháng 5 2019

   Đặt tổng trên là A

Ta có:

\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)

\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)

\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)

\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)

        *Làm tiếp*

                                          \(#Louis\)

29 tháng 6 2017

\(A=\frac{1}{1.2.3}-\frac{1}{2.3.4}-........-\frac{1}{97.98.99}\)

\(2A=\frac{2}{1.2.3}-\frac{2}{2.3.4}-........-\frac{2}{97.98.99}\)

\(2A=-\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{97.98.99}\right)\)

\(2A=-\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+......+\frac{1}{97.98}-\frac{1}{98.99}\right)\)

\(2A=-\left(\frac{1}{1.2}-\frac{1}{98.99}\right)\)

\(2A=-\frac{2425}{4851}\)

\(A=-\frac{2425}{4851}:2\)

\(A=-\frac{2425}{9702}\)

29 tháng 6 2017

\(\frac{98}{99}\)

22 tháng 3 2017

Ta có công thức:

\(\frac{a}{c.\left[c+1\right].\left[c+2\right]}=\frac{a}{2}\left[\frac{1}{c.\left[c+1\right]}-\frac{1}{\left[c+1\right].\left[c+2\right]}\right]\)

vậy

\(C=\frac{1}{2}\left[\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{11.12}-\frac{1}{12.13}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{1.2}-\frac{1}{12.13}\right]\)

\(C=\frac{1}{2}.\frac{77}{156}=\frac{77}{312}\)

mình làm đầu tiên đó, 

Chúc bạn học tốt !

22 tháng 3 2017

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{11.12.13}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{11.12}-\frac{1}{12.13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{156}\right)\)

\(=\frac{1}{2}\cdot\frac{77}{156}\)

\(=\frac{77}{312}\)

17 tháng 5 2016

Mình không chép đề bài nhé :
Gọi biểu thức là A :
Ta có : 2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\)
\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
=\(\frac{1}{1.2}-\frac{1}{49.50}\)( Rút gọn đi ta được cái này )
=1/2 - 1/2450
Vậy A = (1/2 - 1/2450):2