Cho tam giác ABC nhọn (AB<AC,...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
b, HE = 4 3
A B C D I J O K
a) Gọi tiếp điểm của \(\left(I\right),\left(J\right)\) là \(K\)
Ta có \(\frac{DA+DB-AB}{2}=DK=\frac{DA+DC-AC}{2}\Leftrightarrow AB-AC=DB-DC\)
Vậy điểm \(D\) nằm trên cạnh \(BC\) và thỏa \(AB-AC=DB-DC\).
Từ đó, ta dựng điểm \(D\) như sau: (Giả sử \(AB>AC\))
B1: Lấy \(E\) trên cạnh \(AB\) sao cho \(AE=AC\)
B2: Lấy \(F\) trên cạnh \(BC\) sao cho \(BF=BE\)
B3: Lấy trung điểm \(D\) của \(CF\)
b) Dễ thấy:
\(\widehat{OAC}=\widehat{OAJ}+\widehat{JAC}=90^0-\widehat{AIJ}+90^0-\widehat{AJI}=\widehat{IAJ}\)
Tương tự \(\widehat{OAB}=\widehat{IAJ}\). Vậy \(O\) nằm trên phân giác của \(\widehat{BAC}.\)
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
Lời giải:
a. Vì $AM$ là đường kính nên $\widehat{ABM}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow BM\perp AB$
Mà $CH\perp AB$ nên $BM\parallel CH(1)$
Tương tự: $\widehat{ACM}=90^0$ nên $AC\perp CM$
Mà $AC\perp BH$ nên $CM\parallel BH(2)$
Từ $(1); (2)$ suy ra $BHCM$ là hbh (tứ giác có 2 cặp cạnh đối song song)
b.
$\widehat{BAN}=90^0-\widehat{ABD}=90^0-\widehat{ABC}$
$=90^0-\widehat{AMC}$ (góc nt cùng chắn cung AC)
$=\widehat{MAC}$ (đpcm)
Vì $\widehat{BAN}=\widehat{MAC}$
$\Rightarrow \widehat{BAN}+\widehat{NAM}=\widehat{MAC}+\widehat{NAM}$
$\Leftrightarrow \widehat{BAM}=\widehat{CAN}$
$\Leftrightarrow \frac{1}{2}\text{sđc(BM)}=\frac{1}{2}\text{sđc(CN)}$
$\Leftrightarrow \widehat{BCM}=\widehat{CBN}(*)$
Lại có:
$\widehat{ANM}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow AN\perp MN$
Mà $AN\perp BC\Rightarrow MN\parallel BC$
$\Rightarrow BNMC$ là hình thang $(**)$
Từ $(*); (**)$ suy ra $BNMC$ là htc.