Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\) ADE và \(\Delta\)ABC có:
AD = AB (giả thuyết)
\(\widehat{A_1}=\widehat{A_2}=90^0\)
AE = AC (giả thuyết)
Do đó \(\Delta ADE=\Delta ABC\) (c.g.c)
=> DE = BC (2 cạnh tương ứng)
b) Ta có: \(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh)
\(\widehat{C}=\widehat{E}\) (\(\Delta ADE=\Delta ABC\))
=> \(\widehat{N}=\widehat{A}=90^0\)
Hay DE vuông góc với BC
A B C D E N
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)
a) AB = AC => tam giác ABC cân tại A.=> Góc ABC = Góc ACB
và AD = AE => và tam giác ADE cân tại A => Góc ADE = góc AED. Mà 2 góc BAC và góc DAE đối đỉnh và tổng 3 góc trong tam giác là 180 độ => Góc ABC = Góc ACB = Góc ADE = góc AED.
2 góc Góc ADE và Góc ABC ở vị trí sole trong => song song
b) Xét 2 tam giác DMB và tam giác ENC
Ta có: góc DBM = ECN 2 góc của tam giác cân
BD = CE (gt)
Góc DMB = Góc ENC = 90
=> Góc MDB = góc NEC (Tổng 3 góc trong tam gaic1 là 180) => 2 tam giác = nhau => DM = EN
c) Xét 2 tam giác DAM và tam giác EAN
Ta có:
Góc DAM = góc EAN ( đối đỉnh)
Góc ADM = góc AEN (Góc BDM = góc CEN cmt)
AD = AE (BD = AB + AD = EC = AC + AE mà AB = AC = > AD = AE)
=> Tam giác DAM = tam giác EAN => AM = AN => AMN cân
Ý a phải là 2 góc đồng vị chứ bạn,bài này ko có so le trog đâu Nguyen Nguyen Khoi nhé
Tam giác ABC vuông tại A có:
ABC + ACB = 900
ABC + 400 = 900
ABC = 900 - 400
ABC = 500
Xét tam giác ABD và tam giác EBD có:
AB = EB (gt)
ABD = EBD (BD là tia phân giác của ABE)
BD chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
Xét tam giác AKB và tam giác BDA có:
KAB = DBA (2 góc so le trong, AK // BD)
AB chung
ABK = BAD (= 900)
=> Tam giác AKB = Tam giác BDA (g.c.g)
=> AK = BD (2 cạnh tương ứng)
BAD = BED (Tam giác ABD = Tam giác EBD)
mà BAD = 900 (tam giác ABC vuông tại A)
=> BED = 900
=> DE _I_ BC
Tam giác FBC có: CA là đường cao (CA _I_ BF)
BH là đường cao (BH _I_ FC)
mà CA cắt BH tại D
=> D là trực tâm của tam giác FBC
=> FD là đường cao của tam giác FBC
=> FD _I_ BC
mà ED _I_ BC (chứng minh trên)
=> \(FD\equiv ED\)
=> E, D, F thẳng hàng
a) xét tam giác EKB vuông tại K (EK\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)\(\perp\)\(\perp\perp\) vuông góc với AB) có
EK là cạnh góc vuông
EB là cạnh huyền
Vì trong \(\Delta\)tam giác vuông, cạnh huyền là cạnh lớn nhất.
suy ra: DC > DE
mà EK = CE (tam giác ACE = tam giác AKE)
suy ra: CE < EB
a: \(BC=\sqrt{4^2+5^2}=\sqrt{41}\left(cm\right)\)
b: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)
c: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)
\(\widehat{KAD}+\widehat{BAD}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên AD là tia phân giác của góc HAC
đúng rồi nha
cách làm này có đúng không