K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

1. Tìm \(x\):

a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)

\(\dfrac{x}{5}=\dfrac{1}{5}\)

\(\Rightarrow x=1\)

b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)

\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)

\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)

\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)

\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)

\(x=\dfrac{-17}{8}\)

c) \(2016^3.2016^x=2016^8\)

\(2016^x=2016^8:2016^3\)

\(2016^x=2016^{8-3}\)

\(2016^x=2016^5\)

\(\Rightarrow x=5\)

d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)

\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)

\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)

\(x+\dfrac{3}{4}=\dfrac{35}{4}\)

\(x=\dfrac{35}{4}-\dfrac{3}{4}\)

\(x=\dfrac{32}{4}=8\)

e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)

\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)

\(2,8.x-2^5=6\)

\(2,8.x=6+32\)

\(2,8.x=38\)

\(x=38:2,8\)

\(x=\dfrac{95}{7}\)

f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)

\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}:\dfrac{4}{7}\)

\(x=\dfrac{28}{15}\)

g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)

\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)

\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)

\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)

\(\dfrac{3x}{7}=\dfrac{-6}{7}\)

\(\Rightarrow3x=-6\)

\(x=\left(-6\right):3\)

\(x=-2\)

2 tháng 4 2017

2. Thực hiện phép tính:

a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)

\(=\dfrac{7}{18}+\dfrac{9}{5}\)

\(=\dfrac{197}{90}\)

b) \(\dfrac{7.5^2-7^2}{7.24+21}\)

\(=\dfrac{7.25-7.7}{7.24+7.3}\)

\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)

\(=\dfrac{7.18}{7.27}\)

\(=\dfrac{2}{3}\)

c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{2}{9}\)

\(=\dfrac{8}{9}\)

20 tháng 3 2017

— S = 1/4 + 2/4 +...+10/4 (1)

= 1 + 1/4 + 2/4 +...+ 9/4 (2)

=> Lấy (2) trừ đi (1) ta được:

1 — 10/4 = —6/4

Vì 14 = 14/1 = 84/6 mà —6/4 < 84/6

Do đó S < 14

21 tháng 3 2017

Cậu có có thể giúp mk 2 câu tiếp theo đc ko

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)

\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)

\(\Leftrightarrow-2< 24x< 3\)

=>x=0

b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)

=>-1<x<7

hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)

26 tháng 4 2017

Ta thấy: \(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{2.4}\)

\(\dfrac{1}{6^2}=\dfrac{1}{6.6}< \dfrac{1}{4.6}\)

...............

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+....+\dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}.\dfrac{49}{100}\)\(=\dfrac{49}{200}\)

=> \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2^2}+\dfrac{49}{200}=\dfrac{99}{200}\)

do: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)

Chúc bn học tốt nha

28 tháng 4 2017

thanks bạn

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

bài hay đấy để mk thử giải

à bạn xem lại câu a hộ mk với