Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B H
có S AHB = AH.HB/2 = 54 (gt) => AH.HB = 108
S AHC = AH.HC/2 = 96 (gt) => AH.HC = 192
=> AH^2.HB.HC = 108.192 = 20736 (1)
tg ABC có ^A = 90 (gt) ; AH _|_ BC => AH^2 = HB.HC (đl)
=> AH^4 = AH^2.HB.HC và (1)
=> AH^4 = 20736
=> AH = 12 do AH > 0
có AH.HB = 108 => HB = 9
AH.HC = 192 => HC = 16
=> HB + HC = 9 + 16 = 25
Giả sử tam giác ABC vuông tại A và đường cao AH chia tam giác thành 2 phần có diện tích là \(54cm^2\) và \(96cm^2\).
Giả sử \(S_{AHB}=54cm^2,S_{AHC}=96cm^2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}.AH.HB=54\\\dfrac{1}{2}.AH.HC=96\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH.HB=108\\AH.HC=192\end{matrix}\right.\)
\(\Rightarrow AH^2.HB.HC=20736\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC\)
\(\Rightarrow AH^2.HB.HC=AH^2.AH^2=AH^4=20736\Rightarrow AH=12\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{108}{12}=9\\HC=\dfrac{192}{12}=16\end{matrix}\right.\Rightarrow BC=HB+HC=9+16=25\left(cm\right)\)
Bài 1:
3 4 x y z
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Gọi độ dài hình chiếu thứ nhất là x
=>Độ dài hình chiếu thứ 2 là x+14
Theo đề, ta có: x^2+14x=24^2=576
=>x^2+14x-576=0
=>x=18
=>Độ dai cạnh huyền là 18+18+14=50cm
\(a=\sqrt{18\cdot50}=30\left(cm\right)\)
\(b=\sqrt{32\cdot50}=40\left(cm\right)\)
S=1/2*30*40=15*40=600cm2
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0
\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)
Áp dụng hệ thức lượng trong tam giác vuông:
\(24^2=x\left(x+14\right)\)
\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)
Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A có đường cao AH, ta có:
AH2=BH.CH⇒AH=√BH.CH=√1.2=√2
Áp dụng định lí Pytago vào tam giác ABH vuông tại H, ta có:
AH=√BH2+AH2=√1+2=√3AH=BH2+AH2=1+2=3
Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:
AC=√BC2−AB2=√32−3=√6AC=BC2−AB2=32−3=6