K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(x^4>0;x^2>0\) nên \(2x^4>0;3x^2>0\)

\(\Rightarrow2x^4+3x^2>0\)

\(\Rightarrow2x^4+3x^2+100>100\)

hay \(2x^4+3x^2+100\ne0\)

Vậy \(2x^4+3x^2+100\) không có nghiệm

10 tháng 5 2018

\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)

                                                     \(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

                                                        = \(\left(x^2+2\right)\left(x^2+x+1\right)\)

Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)

Suy ra , đa thức trên vô nghiệm 

7 tháng 4 2016

a) P(x)=3x- 5x+x + 2x- x - 4 + 3x+ x+ 7

= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7

= 3x2 + 0 + 0 + x4 + 3

= 3x2 + x4 + 3

b) Vì x2 > hoặc = 0 vs mọi x thuộc R

=))  3x  > hoặc = 3 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > hoặc = x4 + 6 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > 0

Vậy đa thức 3x2 + x4 + 3  vô nghiệm 

2 thieu đề

8 tháng 4 2016

Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x> 0 hoặc 3x= 0  vì xcó thể = 0 được. VÌ vậy nếu bạn bảo 3x>/= 3 là sai

16 tháng 4 2016

Vì x4 \(\ge\) 0 với mọi x \(\in\) R

   3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R

=>P(x) vô nghiệm

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

14 tháng 1 2018

a, Ta có: \(x^2\ge0\Rightarrow x^2+4\ge4>0\)

Vậy đa thức vô nghiệm

b, \(x^2+2x+2=x^2+x+x+2=x\left(x+1\right)+\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1=\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy...

d, \(x^2-6x+10=x^2-3x-3x+10=x\left(x-3\right)-3\left(x-3\right)+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy..

12 tháng 6 2017

1) a) 9x+2x-x=0

11x-x=0

10x=0

x=0

b) 25-9x=0

9x=25

x=25/9

2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)

\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)

\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)

mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm

12 tháng 6 2017

1)

a) Ta có :

9x + 2x - x = 0

( 9 + 2 - 1 )x = 0

10x = 0

x = 0 : 10

x = 0

Vậy x = 0 là nghiệm của đa thức 9x + 2x - x

b) Ta có :

25 - 9x = 0

9x = 25

x = 25 ; 9

x = 25/9

Vậy x = 25/9 là nghiệm của đa thức 25 - 9x

2. Ta có :

Vì x2 luôn > 0 với mọi giá trị của x

x4 luôn lớn hơn 0 với mọi giá trị x

1 > 0

Vậy x2 + x4 + 1 > với mọi giá trị x

Hay da thức x2 + x4 + 1 vô nghiệm

5 tháng 7 2018

Sửa đề \(2x^2-x^2+9\)

\(=x^2+9\)

Do \(x^2\ge0\)

\(\Rightarrow x^2+9\ge9\)

Vậy đa thức trên vô nghiệm

5 tháng 7 2018

\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)

Where is VT ?