K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

a) \(A=111...1555...56\) (n cs 1, n-1 cs 5)

\(A=111...1000...0+555...50+6\) (n cs 1, n cs 0 (không tính số 0 ở số 555...50), n-1 cs 5)

\(A=111...1.10^n+555...5.10+6\) (n cs 1, n-1 cs 5)

\(A=\dfrac{999...9}{9}.10^n+\dfrac{5}{9}.999...9.10+6\) (n cs 9 ở phân số thứ nhất, n-1 cs 9 ở phân số thứ 2)

\(A=\dfrac{10^n-1}{9}.10^n+\dfrac{5}{9}.\left(10^{n-1}-1\right).10+6\)

\(A=\dfrac{\left(10^n\right)^2-10^n+5.10^n-50+54}{9}\)

\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)

\(A=\left(\dfrac{10^n+2}{3}\right)^2\)

 Hiển nhiên \(3|10^n+2\) vì \(10^n+2\) có tổng các chữ số bằng 3, suy ra A là số chính phương.

Câu b áp dụng kĩ thuật tương tự nhé bạn.

 

23 tháng 1 2022

\(A=444......4\) (\(2n\) chữ số 4) \(=4.1111.....111\) (\(2n\) chữ số 1) \(=4.\dfrac{10^{2n}-1}{9}\)

\(B=222.....22\) (\(n+1\) chữ số 2) \(=2.111....11\) (\(n+1\) chữ số 1) \(=2.\dfrac{10^{n+1}-1}{9}\)

\(C=888....888\) (\(n\) chữ số 8) \(=8.111....1111\) (\(n\) chữ số 1) \(=8.\dfrac{10^n-1}{9}\)

 

\(\Leftrightarrow A+B+C+7=\dfrac{4,10^{2n}+2.10^{n+1}+8.10^n-14}{9}\)

 

13 tháng 8 2019

Hỏi đáp Toán

B = 99..9 (n số 9 )

= 99...900...0 ( n+1 số 9 và n+1 số 0).

Đặt x =11...1 (n+1 số 1) .

Thì B =9x.10^(n+1) -9x =9x.[10^(n+1) -1] =9x.99...9 (n+1 số 9 )

nên B = 9x.9x = (9x)^2 =(99...9)^2 (n+1 số 9 ).

2 tháng 8 2020

0pi0i9

25 tháng 8 2017

Đặt \(a=11...1\) (n chữ số 1) thì \(9a=99...9\) (n chữ số 9)\(\Rightarrow10^n=9a+1\)

Ta có:\(A=\) \(11...1-22...2\) (2n chữ số 1;n chữ số 2)

\(\Rightarrow A=11...111...1-22...2\) (2n chữ số 1;n chữ số 2)

\(\Rightarrow A=10^na+a-2a=10^n-a=a\left(10^n-1\right)\)\(=9a^2=\left(3a\right)^2=\left(33...3\right)^2\) (n chữ số 3)

b, tương tự câu a, đặt \(a=11...1\) (n chữ số 1) thì \(10^n=9a+1\)

\(B=11...1+44...4+1\) (2n chữ số 1; n chữ số 4)

\(\Rightarrow B=10^na+a+4a+1=10^n+5a+1\)\(=a\left(9a+6\right)+1=9a^2+6a+1=\left(3a+1\right)^2\)\(=\left(33...34\right)^2\) (n - 1 chữ số 3)

27 tháng 10 2021

mik cx đg cần

20 tháng 8 2017

\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)

\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)

\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)

là số hính phương (đpcm)

20 tháng 8 2017

2) Ta có :

\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)

\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)

\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)

\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)

Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)