Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=\left(2.1+2.2+2.2^2+2.2^3\right)+\left(2^5.1+2^5.2+2^5.2^2+2^5.2^3\right)+...\left(2^{17}.1+2^{17}.2+2^{17}.2^2+2^{17}.2^3\right)\)
\(A=2.\left(1+2+4+8\right)+2^5.\left(1+2+4+8\right)+...+2^{17}.\left(1+2+4+8\right)\)
\(A=2.15+2^5.15+...+2^{17}.15\)
\(A=15.\left(2+2^5+...+2^{17}\right)\)
Vì 15 chia hết cho 5
=> A chia hết cho 5
A=2.(1+2+4+8)+...2^17(1+2+4+8)
A=2.15+2^5.15+...+2^17.15
A=15.(2+2^5+...+2^17) chia het cho 5
Vay.............
Ta có :
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\) \(=30+30.2^5+...30.2^{17}\)
\(=30.\left(1+2^5+...+2^{17}\right)\)
\(=5.6.\left(1+2^5+...+2^{17}\right)\) chia hết cho 5
Vậy A chia hết cho 5
A=2+22+23+...+220
A=(2+22+23+24)+(25+26+27+28)+....+(217+218+219+220)
A=2(1+2+22+23)+25(1+2+22+23)+....+217(1+2+22+23)
A=2.15+25.15+...+217.15
A=(2+25+...+217).15
A=(2+25+...+217).3.5
vậy A chia hết cho 5
Ta có \(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
\(A=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{17}\right)\)
\(A=15.\left(2+2^5+...+2^{17}\right)\)
Mà 15⋮5
⇒A⋮5 (đpcm)