K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2022

*Gọi D là giao của BM và EF.

△ABC vuông tại B có: BM là trung tuyến.

\(\Rightarrow BM=CM=\dfrac{BC}{2}\)

\(\Rightarrow\)△BMC cân tại M.

\(\Rightarrow\widehat{MCB}=\widehat{MBC}\)

Tứ giác BEHF có: \(\widehat{EBF}=\widehat{BFH}=\widehat{BEH}=90^0\)

\(\Rightarrow\)BEHF là hình chữ nhật.

\(\Rightarrow\widehat{HBE}=\widehat{DEB}\).

Ta có: \(\widehat{MCB}+\widehat{HBE}=90^0\) (△BHC vuông tại H).

\(\Rightarrow\widehat{MBC}+\widehat{DEB}=90^0\)

\(\Rightarrow180^0-\widehat{BDE}=90^0\)

\(\Rightarrow\widehat{BDE}=90^0\)

\(\Rightarrow\)BM⊥EF tại D.

1 tháng 7 2022

Suppose I is the intersection of BM and EF.

Consider the right triangle ABC, which has \(\widehat{B}=90^o\), has the median BM, so, \(BM=\dfrac{AC}{2}\)  (1)

On the other hand, M is the midpoint of AC, therefore, \(AM=\dfrac{AC}{2}\)  (2)

From, (1) and (2), we have \(BM=AM\left(=\dfrac{AC}{2}\right)\), which means MAB is an isosceles triangle, and this leads to \(\widehat{A}=\widehat{ABM}\) or \(\widehat{A}=\widehat{FBI}\)

Consider the right triangle ABH (right at H), has the height HF, thus, \(BH^2=BF.BA\)

Similarly, we have \(BH^2=BE.BC\)

From these, we get \(BF.BA=BE.BC\left(=BH^2\right)\) or \(\dfrac{BF}{BC}=\dfrac{BE}{BA}\)

Consider the 2 right triangles (which are both right at B), we have \(\dfrac{BF}{BC}=\dfrac{BE}{BA}\). Therefore, \(\Delta BEF~\Delta BAC\left(s.a.s\right)\), which means \(\widehat{BFE}=\widehat{C}\) or \(\widehat{BFI}=\widehat{C}\)

Also, \(\widehat{A}+\widehat{C}=90^o\) due to the right triangle ABC (right at B). Because \(\widehat{FBI}=\widehat{A};\widehat{BFI}=\widehat{C}\), we have \(\widehat{FBI}+\widehat{BFI}=90^o\). This means FBI is a right triangle (whose right angle is I). Thus, \(BM\perp EF\), and that is what we must prove!

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

27 tháng 4 2018

A B C O H D E F

Ta có: Tứ giác ABDC nội tiếp đường tròn (O) => ^DBC=^CAD (1)

Đường tròn (O) có đường kính AD và điểm B thuộc (O) => ^ABD vuông tại B => AB \(\perp\)BD

=> HE // BD (Quan hệ song song vuông góc) => ^DBC=^BHE (So le trong)

^BHE=^BAH (Cùng phụ ^AHE) => ^DBC=^BAH=^EAH.

Dễ thấy tứ giác AEHF là tứ giác nội tiếp (Tâm là trung điểm của AH)

=> ^EAH=^EFH. Mà ^EAH=^DBC (cmt) => ^EFH=^DBC (2)

Từ (1) và (2) => ^CAD=^EFH 

Lại có: ^EFH+^AFE=900 ; ^CAD+^ADC=900 => ^AFE=^ADC

=> ^CAD+^AFE=900 => AD\(\perp\)EF (đpcm)

28 tháng 7 2019

Gợi ý:  A F E ^ = A H E ^  (tính chất hình chữ nhật và  A H E ^ = A B H ^  (cùng phụ  B H E ^ )

24 tháng 2 2023

Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)\(\left(1\right)\)

Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)

=> tứ giác AEHF là h.c.n

=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)

vì \(\widehat{E_1}+\widehat{BEF}=180^o\)

\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau

=> tứ giác BEFC nội tiếp

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)