Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
A B C H D E M N
a, AB là trung trực của HD (gt) => AH = AD (đn)
AC là trung trực của EH (gt) => AE = AH (đn)
=> AD = AE mà A nằm giữa D và E
=> A là trung điểm của DE (đn)
b, HN _|_ AC (gt)
AB _|_ AC do tam giác ABC vuông tại A (gt)
AB và HN phân biệt
=> HN // AB (tc)
=> góc AMH + góc NHM = 180 (trong cùng phía)
mà góc AMH = 90 do HM _|_ AB (gt)
=> góc NHM = 180 - 90 = 90
=> tam giác DHE vuông tại H (đn)
c. xét tam giác AHB và tam giác ADB có : AH = AD (câu a)
AB chung
HB = BD do thuộc đường trung trực của HD (gt)
=> tam giác AHB = tam giác ADB (c-c-c)
=> góc AHB = góc ADB (đn)
mà AH _|_ BC (gt) => góc AHB = góc AHC = 90 (đn)
=> góc ADB = 90
xét tam giác CEA và tam giác CHA có : AC chung
AE = AH (Câu a)
EC = HC do C thuộc đường trung trực của EH (gt)
=> tam giác CEA = tam giác CHA (C-C-C)
=> góc CEA = góc CHA
mà góc CHA = 90 (Cmt)
=> góc CEA = 90
góc ADB = 90 (cmt)
=> góc CEA + góc ADB = 90 + 90 = 180
mà 2 góc này trong cùng phía
=> CD// CE(tc)
a:
Xét ΔAHD có AH=HD và góc AHD=90 độ
nên ΔAHD vuông cân tại H
=>góc HAD=góc HDA=45 độ
=>góc ADE=45 độ
Xét tứ giác ABDE có góc EAB+góc EDB=180 độ
nên ABDE là tứ giác nội tiếp
=>góc ABE=góc ADE=45 độ
Xét ΔEAB vuông tại A có góc ABE=45 độ
nên ΔEAB vuông cân tại A
=>AE=AB
b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ
nên AMHB là tứ giác nội tiếp
=>góc AHM=góc ABM=45 độ