K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

Xem lại đề

12 tháng 8 2021

đúng nha bạn

12 tháng 8 2021

Hình bạn tự vẽ nhé. 

Ta có: B' là điểm đối xứng của B qua O( tâm đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow BB'\) là đường kính của đường tròn ngoại tiếp tam giác ABC \(\Rightarrow\Lambda BAB'\) và \(\Lambda BCB'\) là góc chắn nửa đường tròn ( đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'\perp AB\\B'C\perp BC\end{matrix}\right.\) Mà \(\left\{{}\begin{matrix}HC\perp AB\\AH\perp BC\end{matrix}\right.\) ( do H là trực tâm của tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'//HC\\AH//B'C\end{matrix}\right.\) \(\Rightarrow\) AB'CH là hình bình hành \(\Rightarrow\left\{{}\begin{matrix}AH//B'C\\AH=B'C\end{matrix}\right.\) \(\Rightarrowđpcm\)

6 tháng 11 2017

 .

3). Theo trên, ta có  B E = C D  mà  C E = C F ⇒ B C = D F .

Ta có CI là đường phân giác góc BCD, nên  I B I D = C B C D = D F B E ⇒ I B . B E = I D . D F .

Mà CO là trung trực EF và  I ∈ C O , suy ra IE=IF.

Từ hai đẳng thức trên, suy ra  I B . B E . E I = I D . D F . F I .

23 tháng 1 2018

2). Từ  Δ O B E = Δ O D C ⇒ O E = O C .

Mà CO là đường cao tam giác cân CEF , suy ra OE=OF.

Từ đó  O E = O C = O F , vậy O là tâm đường tròn ngoại tiếp tam giác .

9 tháng 9 2018

1). Ta có góc nội tiếp bằng nhau  B D M ^ = B C F ^   ( 1 ) và  B M A ^ = B F A ^    suy ra  180 0 − B M A ^ = 180 0 − B F A ^  hay  B M D ^ = B F C ^  (2).

Từ (1) và (2), suy ra  Δ B D M ~ Δ B C F   (g - g).

30 tháng 1 2018

2). Từ AD là phân giác  B A C ^  suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.

Từ 1). Δ B D M ∽ Δ B C F , ta có  D M C F = B D B C .

Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E  (3).

 

Ta lại có góc nội tiếp  A D E ^ = F C E ^  (4).

Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C  

4 tháng 5 2019

1) Ta có

  B I C ^ = 180 0 − I B C ^ − I C B ^ = 180 0 − A B C ^ 2 − A C B ^ 2 = 180 0 − 180 ∘ − B A C ^ 2 = 90 0 + B A C ^ 2 ⇔ B A C ^ = 2 B I C ^ − 180 °

Tương tự B Q C ^ = 90 0 + B P C ^ 2 ⇔ B P C ^ = 2 B Q C ^ − 180 ° .

Tứ giác BPAC nội tiếp, suy ra B A C ^ = B P C ^ ⇒ B Q C ^ = B I C ^ , nên 4 điểm B, I, Q, C thuộc một đường tròn.

2) Gọi đường tròn (B; BI) giao (C; CI) tại K khác I thì K cố định.

Góc I B M ^  là góc ở tâm chắn cung I M ⏜  và I K M ^  là góc nội tiếp chắn cung  I M ⏜ , suy ra I K M ^ = 1 2 I B M ^  (1).

Tương tự I K N ^ = 1 2 I C N ^  (2).

Theo câu 1) B, I, Q, C thuộc một đường tròn, suy ra  I B M ^ = I B Q ^ = I C Q ^ = I C N ^  (3).

Từ (1), (2) và (3), suy ra I K M ^ = I K N ^ ⇒ K M ≡ K N .

Vậy MN đi qua K cố định.