Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông tại A,có ABcho tam giác ABC vuông tại A,có AB<AC.Gọi M và n lần lượt là hình chiếu của D trên AB và AC,BN cắt CM tại K,AK cắt Dm tại I,BN cắt DM tại E ,CM cắt DN tại F.a) chứng minh EF song song BC b) C/m K là trực tâm tam giác AEFc) tính góc BID
ĐS: chiu thúa
a. -Xét △ABC: AD là đường phân giác (gt)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)
\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)
\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)
b) -Xét △ABC: DE//AB (gt)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)
Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)
c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))
Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)
\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.
\(\Rightarrow AE=DE\)
-Xét △AIE: AP là đường phân giác.
\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)
Mà \(AE=DE\left(cmt\right)\); \(AI=BI\) (I là trung điểm AB)
\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)
-Xét △QDE: DE//BI.
\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)
Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)
a) Ta có DN // AB, DM // AC
⇒ ANDM là hình bình hành
⇒ OA = OD hay A và D đối xứng với nhau qua điểm O.
b) D là trung điểm của BC (gt), DM // AC
⇒ M là trung điểm của AB
Tương tự N là trung điểm của AC
Do đó MN là đường trung bình của ΔABC
⇒ MN = (1/2)BC = (1/2).16 = 8cm.
a: Xét tứ giác AMDN có
AM//DN
AN//DM
Do đó: AMDN là hình bình hành
=>Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
hay A và D đối xứng nhau qua O