Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
góc A chung
Do đó: ΔABD\(\sim\)ΔACE
b: ta có: ΔABD\(\sim\)ΔACE
nên \(\dfrac{S_{ABD}}{S_{ACE}}=\left(\dfrac{AB}{AC}\right)^2=\left(\dfrac{5}{7}\right)^2=\dfrac{25}{49}\)
Xét tam giác AED Và Tam giác ABC có : Góc A chung và \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5},\frac{AD}{AC}=\frac{8}{20}=\frac{2}{5}\) suy ra tam giác AED đồng dạng với tam giác ABC (cgc) suy ra \(S_{AED}:S_{ABC}=\left(\frac{AE}{AB}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)
a) suýt làm được
b)mém làm xong
c)đang suy nghĩ
suy ra không làm được!thông cảm nhé!
`bạn tự kẻ hình nhé
ta đễ dàng cm dk DM=CM
Từ đó ta có SAMD=1/2 SDAC=1/3 SABC
SBDM = 1/2SBDC= 1/6 SABC
Suy ra SABM=(1/3+1/6)SABC= 1/2SABC= 15m^2
Đặt SAKE = x, SAKD = y
Ta có SBKE = 2x, SCKD = y.
Ta có:
S A B D = 15 c m 2 ⇒ 3 x + y = 15 ( 1 ) S A C E = 10 c m 2 ⇒ x + 2 y = 10 ( 2 )
Þ x = 4cm2, y = 3cm2
Þ SADKE = 7cm2
a) Xét \(\Delta ABD\) và \(\Delta ACE\) có :
\(\frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{3};\widehat{BAC}:chung\)
=> \(\Delta ABD\) ~ \(\Delta ACE\)
=> \(\widehat{ABD}=\widehat{ACE}\)
b) Xét \(\Delta BEI\) và \(\Delta CDI\) có :
\(\widehat{ABD}=\widehat{ACE}\) ; \(\widehat{BIE}=\widehat{CID}\)
=> \(\Delta BEI\) ~ \(\Delta CDI\)
=> \(\frac{BI}{CI}=\frac{EI}{DI}\Rightarrow BI.DI=EI.CI\)
c) Xét \(\Delta AED\) và \(\Delta ACB\) có :
\(\widehat{BAC}:chung;\frac{AE}{AC}=\frac{AD}{AB}\)
=> \(\Delta AED\) ~ \(\Delta ACB\)
=> \(\frac{S_{\Delta AED}}{S_{\Delta ACB}}=\frac{AE^2}{AC^2}=\left(\frac{1}{3}\right)^2=\frac{1}{9}\)
\(\Rightarrow\frac{S\Delta ABC-SBEDC}{S\Delta ABC}=\frac{1}{9}\)
=> \(9\left(S\Delta ABC-SBEDC\right)=S\Delta ABC\)
=> \(9S\Delta ABC-9SBEDC=S\Delta ABC\Rightarrow8S\Delta ABC=9SBEDC\)
=> \(\frac{SBEDC}{S\Delta ABC}=\frac{8}{9}\)