K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp

b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE

\(\Rightarrow OM\bot DE\)

CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)

CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)

mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)

\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE

\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng

c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)

\(\Rightarrow\) \(IK\parallel DE\)

 

undefined

19 tháng 6 2021

thank :)

a: A,E,D,B cùng thuộc (O)

=>AEDB nội tiếp

A,E,C,B cùng thuộc (O)

=>AECB nội tiếp

B,E,C,D cùng thuộc (O)

=>BECD nội tiếp

góc AHB=góc AKB=90 độ

=>AKHB nội tiếp

b: Đề sai rồi bạn

loading...  loading...  

a: Xét tứ giác AKIB có

góc AKB=góc AIB=90độ

=>AKIB là tứ giác nội tiếp

b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD

góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD

=>góc BHD=góc BDH

=>ΔBHD cân tại B

8 tháng 6 2015

A B C O H D K E

 

a/ cm tứ giác ABKH nội tiếp đường tròn và xđ tâm của đường tròn đó :

Trong tứ giác ABHK có : góc AKB = góc AHB = 90 độ 

                                   và cùng nhìn cạnh AB => tứ giác ABHK nội tiếp 

=> Tâm của đường tròn này nằm trên trung điểm của cạnh AB

b/ cm HK // DE:

Có : góc BED = góc BAD ( cùng chắn cung BD)

mà góc BAD = góc BKH ( tú giác ABHK nội tiếp)

=> góc BKH = góc BED mà ở vị trí đồng vị => HK // DE