K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

a) trong tam giác cân đường cao đồng thời là đường phân giác nên AH cũng là đường phân giác nên góc BAH = góc CAH

Xét ΔADH và ΔAEH có:
góc ADH=góc AEH (= 90o)

chung AH

góc HAD = góc HAE (cmt)

⇒ΔADH = ΔAEH(ch-gn)

⇒ DH = EH (2 cạnh tương ứng)

b) trong tam giác cân đường cao đồng thời là đường trung tuyến nên AH cũng là đường trung tuyến nên HB = HC

Xét ΔBDH và ΔCEH có:

góc BDH = góc CEH (=90o)

HB=HC(cmt)

góc B = góc C (ΔABC cân tại A)

⇒ ΔBDH = ΔCEH(ch-gn)

23 tháng 7 2021

Hình vẽ: Bạn tự vẽ hình nhé !

a, Ta có:

△ABC cân tại A nên ∠ABC= ∠ACB hay ∠ABH= ∠ACH 

                                 và AB= AC

Xét △AHB và △AHC, có:
  AB= AC           ( theo chứng minh trên )

  ∠ABH= ∠ACH ( theo chứng minh trên )

  AH: cạnh chung

Nên: △AHB= △AHC ( c.g.c)

⇒ ∠BAH= ∠CAH ( 2 góc tương ứng ) hay ∠DAH= ∠EAD

Xét △ADH và △AEH, có:

 ∠HDA= ∠HEA=90o ( Do HD ⊥ AB, HE ⊥ AC )

  AH: cạnh chung

  ∠DAH= ∠EAH ( theo chứng minh trên )

Nên: △ADH= △AEH ( cạnh huyền- góc nhọn )

 ⇒ AD= AE ( 2 cạnh tương ứng ) ( đcpcm )

b,

Ta có: Do △ADH= △AEH nên :HD= HE ( 2 cạnh tương ứng )

          AB= AC 

    ⇒ AD+ DB= AE+EC

  mà AD= AE nên DB= EC

Xét △BDH và △CEH, có:

  ∠BDH= ∠CEH=90o 

  HD= HE           ( theo chứng minh trên )

  DB= EC           ( theo chứng minh trên ) 

Nên △BDH= △CEH ( c.g.c ) ( đcpcm)

a/ Xét tam giác AHB và tam giác AHC có:

AH chung

Góc AHB=AHC=90o

Góc ABC=ACB(Tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC(ch-gn)

=> HB=HC(cạnh tương ứng) và Góc BAH=CAH(góc tương ứng)

b/ Xét tam giác AHD và tam giác AHE có:

AH chung

ADH=AEH=900

DAH=EAH(Góc tương ứng của tam giác AHB=tam giác AHC)

=> Tam giác AHD=tam giác AHE(ch-gn)

=> AD=AE(cạnh tương ứng) và DH=HE(cạnh tương ứng)

=> Tam giác HDE cân tại H.

B C A H D E

10 tháng 1 2021

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

27 tháng 6 2020

Nhờ vẽ hình cho mình luôn nha

10 tháng 8 2018

CM:DH=DE

Vì AH là đường cao=>góc AHC=90o

Vì DE vuông góc với AC=>góc AEP=90o

AHC=AEP(=90o)

Xét tam giác ADE và tam giác ADH có:

AHC=AEP(=90)

AD:cạnh chung

EAD=HAD(AD là phân giác của tam giác AHC)

=>tam giác ADE=tam giác ADH(cạnh huyền-góc nhọn)

=>DE=DH(2 cạnh tương ứng)

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

góc HAD=góc EAD

=>ΔAHD=ΔAED

=>DH=DE

b: Xét ΔAEK vuôngtại E và ΔAHC vuông tại H có

AE=AH

góc EAK chung

=>ΔAEK=ΔAHC

=>AK=AC

=>ΔAKC cân tại A

c: Xét ΔKHE và ΔCEH có

KH=CE
HE chung

KE=CH

=>ΔKHE=ΔCEH

d: CB=8+32=40cm

\(AC=\sqrt{32\cdot40}=\sqrt{1280}=16\sqrt{5}\left(cm\right)\)