Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^3x+m^2x-m^2-mx-5m=6-2x\)
\(\left(m^3+m^2-m+2\right)x=m^2+5m+6\)
\(\left(m+2\right)\left(m^2-m+1\right)x=\left(m+2\right)\left(m+3\right)\)
Vậy để nghiêm \(x\in R\Rightarrow m=-2\)
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x-2-5x-5=15\)
\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)
Vậy \(S=\left\{\frac{-11}{2}\right\}\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow-4x-7=15\)
\(\Leftrightarrow-4x=22\)
\(\Leftrightarrow x=22:\left(-4\right)\)
\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)
Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)
5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6
\(\Leftrightarrow\) 5x-2x>6+2
\(\Leftrightarrow\)3x>8
\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)
0 8/3
Chúc bn học tốt❤
\(\frac{3}{4}\left(x^2+1\right)^2+3\left(x^2+x\right)-9=0\)
<=> \(3\left(x^2+1\right)^2.4+3\left(x^2+x\right).4-9.4=0.4\)
<=> \(3\left(x^2+1\right)^2+12\left(x^2+x\right)-36=0\)
<=> \(3x^4+18x^2+12x-33=0\)
<=> \(3\left(x-1\right)\left(x^3+x^2+7x+11\right)=0\)
<=> \(x-1=0\)
<=> \(x=1\)
Mà vì: \(x^3+x^2+7x+11\ne0\)
=> x = 1
\(\left(2-x\right)\left(2x-1\right)+\left(4x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(2x-1\right)+\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2-x+2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\x+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-1\end{array}\right.\)
Vậy phương trình có tập nghiệm \(\left\{-1;\frac{1}{2}\right\}\)
(2-x)(2x-1)+(4x^2-4x+1)=0
Ta có: (2x-1)(2-x)+(2x-1)^2=0
(2x-1)(2-x+2x-1)=0
Sau đó bn tự lam nha tại vì mk làm bằng phone
a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)
\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)
=>x=1/2 hoặc x=-1 hoặc x=2
Vậy pt có tập nghiệm là S={1/2;-1;2}
b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)
\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)
\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)
Vậy...
c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)
Đặt x-6=t => x-8=t-2
Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)
\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)
\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)
\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)
Mà t^2-2t+8=(t-1)^2+7 > 0
\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)
Vậy...
a) giai phuong trinh voi m=2
b)tim dieu kien cua m de phuong trinh da cho co nghiem duy nhat ? tim nghiem do
a: Khi m=2 thì pt sẽ là x+1=2
hay x=1
b: Để phương trình có nghiệm duy nhất thì (m-1)(m+1)<>0
hay \(m\notin\left\{1;-1\right\}\)
Nghiệm duy nhất sẽ là \(\dfrac{m-1}{m^2-1}=\dfrac{1}{m+1}\)