K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

12 tháng 2 2019

.mn kb nha

1 tháng 7 2019

Tự vẽ hình nhé!

a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)

\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược

\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)

b, Gọi C là trung điểm dây AB ta có C cố định

(d) không qua O nên \(OC\perp AB\)

            \(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)

\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM

\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn

Mà O và C cố định

Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)

c, Tứ giác MNOP là hình vuông 

\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\)Tam giác OMN vuông cân tại N  \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)

\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)

d, từ nghĩ đã...

\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)

1 tháng 7 2019

cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó

d, Làm tiếp:

Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'

OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))

\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)

\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\)     ;   \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)

Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)

\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP 

Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)

Mặt khác :  O , I cùng thuộc nửa mặt phẳng bờ d

Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R

3 tháng 1 2018

a ta có \(\Delta\)OHK đồng dạng \(\Delta\)OAM \(\Rightarrow\)\(\frac{OK}{OM}\)=\(\frac{OH}{OA}\)\(\Rightarrow\)OK.OA=OH.OM

OM\(\perp\)BC\(\Leftrightarrow\)OC=OB NÊN O\(\in\)Đường trung trực của BC

MC=MB\(\Leftrightarrow\)M\(\in\)Đường trung trực của BC \(\Rightarrow\)OM\(\perp\)BC

XÉT \(\Delta\)OCM vuông tại C CH\(\perp\)OM\(\Rightarrow\)OC2=OH.OM \(\Rightarrow\)OK.OA ko đổi

3 tháng 1 2018

a, tam giác 0HK đồng dạng với 0AM

0K/0M = 0H / 0A

nên 0K .0A = 0H.0M

em chúng minh 0M vuông góc với BC

0C = 0B nên 0 thuộc đường trung trực của BC
MC = MB nên M thuộc trung trực của BC
nên 0M là trung trực của BC
nên 0M vuông góc với BC tại H

tam giác 0CM vuông tại C , CH vuông góc với 0M

nên 0C^2 = 0H, 0M

nên không đổi nhé

Em chứng minh K không đổi đi

Theo câu a thầy chứng minh bên trên thì có:

OA.OK=OH.OM=OB^2=R^2

=>OA.OK=R^2=>OK=R^2/OA

Gọi I là trung điểm OK

tam giác OHK vuông tại H nên ta có:IH=1/2OK=R^2/2OA

mà O,A không đổi nên OA không đổi

=>IH không đổi

Hay H thuộc đường tròn tâm I bán kính R^2/2OA

với I là điểm nằm giữa O và A thỏa mãn OI=1/2OK=R^2/2OA

(đường tròn có tâm nằm trên đường thẳng OA và đi qua O bán kính R^2/2OA

Câu c em làm như sau nhé

Diện tích tứ giác MBOC=OM.HC

nên để diện tích tứ giác MBOC min thì OM.HC Min

Xét:OM^2.HC^2=OM^2.(OC^2-OH^2)=OM^2.OC^2-OM^2.OH^2=OM^2.R^2-R^4 (Do OM.OH=R^2)

=>Để OM,HC min thì OM^2.R^2 min hay OM^2 Min

mà OM>=OA (do OM là cạnh huyền của tam giác vuông OAM)

=>OM min <=>OM=OA hay M trùng với A

Khi đó OM^2.HC^2=(2R)^2.R^2-R^4=3R^4

=>Diện tích tứ giác MBOC Min=căn 3 R^2 <=>M trùng với A