K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Chọn D

Điều kiện xác định: .

Khi đó

Kết hợp với điều kiện xác định suy ra n = 11

Ta có: 6jgl3qmNpSjv.png.

Số hạng chứa  x 9  ứng với k thỏa 7k - 33 = 9 => k = 6

Vậy hệ số của số hạng chứa  x 9  06g6hMDgg19P.png.

 

NV
12 tháng 11 2019

Bài 1:

\(\left(x^{-\frac{1}{5}}+x^{\frac{1}{3}}\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^{-\frac{1}{5}}\right)^k\left(x^{\frac{1}{3}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^kx^{\frac{10}{3}-\frac{8k}{15}}\)

Trong khai triển trên có 11 số hạng nên số hạng đứng giữa có \(k=6\)

\(\Rightarrow\) Số hạng đó là \(C_{10}^6x^{\frac{10}{3}-\frac{48}{15}}=C_{10}^6x^{\frac{2}{15}}\)

Bài 2:

\(\left(1+x^2\right)^n=a_0+a_1x^2+a_2x^4+...+a_nx^{2n}\)

Cho \(x=1\Rightarrow2^n=a_0+a_1+...+a_n=1024=2^{10}\)

\(\Rightarrow n=10\)

\(\left(1+x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^{2k}\)

Số hạng chứa \(x^{12}\Rightarrow2k=12\Rightarrow k=6\) có hệ số là \(C_{10}^6\)

Bài 3:

\(\left(x-\frac{1}{4}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(-\frac{1}{4}\right)^{n-k}\)

Với \(k=n-2\Rightarrow\) hệ số là \(C_n^{n-2}\left(-\frac{1}{4}\right)^2=\frac{1}{16}C_n^2\)

\(\Rightarrow\frac{1}{16}C_n^2=31\Rightarrow C_n^2=496\Rightarrow n=32\)

NV
12 tháng 11 2019

Bài 4:

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)

Cho \(x=2\) ta được:

\(\left(1+2\right)^n=C_n^0+2C_n^1+2^2C_n^2+...+2^nC_n^n\)

\(\Rightarrow S=3^n\)

Bài 5:

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^{2k}C_n^{2k}+x^{2k+1}C_n^{2k+1}+...\)

Cho \(x=-1\) ta được:

\(0=C_n^0-C_n^1+C_n^2-C_n^3+...+C_n^{2k}-C_n^{2k+1}+...\)

\(\Rightarrow C_n^0+C_n^2+...+C_n^{2k}+...=C_n^1+C_n^3+...+C_n^{2k+1}+...\)

Bài 6:

\(\left(1-4x+x^2\right)^5=\sum\limits^5_{k=0}C_5^k\left(-4x+x^2\right)^k=\sum\limits^5_{k=0}\sum\limits^k_{i=0}C_5^kC_k^i\left(-4\right)^ix^{2k-i}\)

Ta có: \(\left\{{}\begin{matrix}2k-i=5\\0\le i\le k\le5\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;3\right);\left(3;4\right);\left(5;5\right)\)

Hệ số: \(\left(-4\right)^1.C_5^3C_3^1+\left(-4\right)^3C_5^4.C_4^3+\left(-4\right)^5C_5^5.C_5^5\)

18 tháng 5 2017

Tổ hợp - xác suất

NV
5 tháng 11 2019

\(\left(x^{-\frac{2}{3}}+x^{\frac{3}{4}}\right)^{17}=\sum\limits^{17}_{k=0}C_{17}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{3}{4}}\right)^{17-k}=\sum\limits^{17}_{k=0}C_{17}^kx^{\frac{51}{4}-\frac{17}{12}k}\)

Số hạng thứ 13 \(\Rightarrow k=12\) là: \(C_{17}^{12}x^{-\frac{17}{4}}\)

b/ Xét khai triển:

\(\left(3-x\right)^n=C_n^03^n+C_n^13^{n-1}\left(-x\right)^1+C_n^23^{n-2}\left(-x\right)^2+...+C_n^n\left(-x\right)^n\)

Cho \(x=1\) ta được:

\(2^n=3^nC_n^0-3^{n-1}C_n^1+3^{n-2}C_n^2+...+\left(-1\right)^nC_n^n\)

À, đến đây mới thấy đề thiếu, biết rằng cái kia làm sao hả bạn?

6 tháng 11 2019

dòng phía dưới đó @Nguyễn Việt Lâm

10 tháng 11 2016

\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)

\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)

\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)

\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)

\(\Rightarrow2n+1=21\Rightarrow n=10\)

Số hạng chứa \(x^{26}\) có dạng là:

\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)

\(\Rightarrow k=4\)

hệ số của \(x^{26}\) là:

\(C^4_{10}=210\)

27 tháng 11 2021

dạ chỉ em cái dòng số 3 sao ra 21 nha, em ko biết .. oho

NV
6 tháng 11 2019

a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)

Khai triển \(\left(2-3x^2+x^3\right)^5\)

\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)

Hệ số của số hạng chứa \(x^9\):

\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)

b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)

Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_5^4+C_5^3+...+C_{22}^3\)

\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)

Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)

18 tháng 12 2021

Cái này tui chưa học đâu nha bạn iu

NV
30 tháng 4 2019

\(C_n^2-C_n^1=44\Leftrightarrow\frac{n!}{\left(n-2\right)!.2}-\frac{n!}{\left(n-1\right)!}=44\)

\(\Leftrightarrow\frac{n\left(n-1\right)}{2}-n-44=0\Leftrightarrow n^2-3n-88=0\Rightarrow n=11\)

\(\left(x^{\frac{3}{2}}+x^{-4}\right)^{11}=\sum\limits^{11}_{k=0}C_{11}^k\left(x^{\frac{3}{2}}\right)^k.\left(x^{-4}\right)^{11-k}\)

Số hạng tổng quát:

\(C_{11}^k\left(x^{\frac{3}{2}}\right)^k.\left(x^{-4}\right)^{11-k}=C_{11}^kx^{\frac{3k}{2}-44+4k}=C_{11}^kx^{\frac{11k}{2}-44}\)

Số hạng ko chứa \(x\Rightarrow\frac{11k}{2}-44=0\Rightarrow11k=88\Rightarrow k=8\)

Vậy số hạng ko chứa x là \(C_{11}^8=165\)