Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
Lời giải:
Ta có:
Để hàm \(y=m\sin x-n\cos x-3x\) nghịch biến trên R thì:
\(y'=m\cos x+n\sin x-3\leq 0, \forall x\in\mathbb{R}\)
\(\Leftrightarrow m\cos x+n\sin x\leq 3\), \(\forall x\in\mathbb{R}\)
\(\Rightarrow (m\cos x+n\sin x)_{\max}\le 3(*)\)
Ta thấy theo BĐT Bunhiacopxky:
\((m\cos x+n\sin x)^2\leq (m^2+n^2)(\cos ^2x+\sin ^2x)\)
hay \((m\cos x+n\sin x)^2\leq m^2+n^2\)
\(\Rightarrow m\cos x+n\sin x\leq \sqrt{m^2+n^2}\).
Do đó \((m\cos x+n\sin x)_{\max}=\sqrt{m^2+n^2}(**)\)
Từ (*) và (**) suy ra để \(y'\leq 0\) thì \(\sqrt{m^2+n^2}\leq 3\Leftrightarrow m^2+n^2\leq 9\)
Đáp án C.
Chọn B
y ' = x 2 - 2 x + ( m - 1 ) .
Hàm số đồng biến trên R ⇔ y' ≥ 0 ∀x ∈ R
⇒ Δ = ( - 1 ) 2 - ( m - 1 ) = - m + 2 ≤ 0 ⇔ m > 2
Chọn A
Ta có.
.
Hàm số đồng biến trên khi .
Ta có
.
+TH1
.
+TH2
.
Vậy .
Chọn C
.
.