K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

12 tháng 1 2017


17 tháng 5 2017

Chọn đáp án D

Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng  α đi qua gốc tọa độ O 0 ;   0 ;   0 luôn có phương trình dạng A x + B y + C z = 0  với n ⇀ = A   ; B   ; C   A 2 + B 2 + C 2 # 0  là một vec-tơ pháp tuyến của mặt phẳng đó.

Tổng quát: Phương trình mặt phẳng đi qua điểm M x o ; y o ; z o và nhận  n ⇀ = A   ; B   ; C   A 2 + B 2 + C 2 # 0  làm một vec-tọa độ pháp tuyến thì có phương trình tổng quát được viết theo công thức

A x - x o + B y - y o + C z - z o = 0

30 tháng 1 2018



Chọn D

10 tháng 10 2019

Chọn A

19 tháng 3 2016

a) Xét đường thẳng d qua M và d ⊥ (α).

Khi đó H chính là giao điểm của d và  (α). 

Vectơ (1 ; 1 ; 1) là vectơ pháp tuyến của (α) nên  là vectơ chỉ phương của d.

Phương trình tham số của đường thẳng d có dạng:    .

Thay tọa độ x ; y ; z của phương trình trên vào phương trình xác định (α), ta có:

3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0).

b) Gọi M'(x ; y ; z) là điểm đối xứng của M qua mặt phẳng (α), thì hình chiếu vuông góc H của M xuống (α) chính là trung điểm của MM'.

Ta có: 

 => x = -3 ;

    => y = 0 ;

    => z = -2.

Vậy M'(-3 ; 0 ;2).

c) Tính khoảng cách từ điểm M đến mặt phẳng (α) bằng 2 cách sau:

Cách 1: Áp dụng công thức ta có:

.

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

      d(M,(α) )= MH = .


 

26 tháng 12 2017

D địa trung hải

18 tháng 4 2016

a) Xét đường thẳng d qua M và d ⊥ (α).

Khi đó H chính là giao điểm của d và  (α). 

Vectơ (1 ; 1 ; 1) là vectơ pháp tuyến của (α) nên  là vectơ chỉ phương của d.

Phương trình tham số của đường thẳng d có dạng:    .

Thay tọa độ x ; y ; z của phương trình trên vào phương trình xác định (α), ta có:

3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0).

b) Gọi M'(x ; y ; z) là điểm đối xứng của M qua mặt phẳng (α), thì hình chiếu vuông góc H của M xuống (α) chính là trung điểm của MM'.

Ta có: 

 => x = -3 ;

    => y = 0 ;

    => z = -2.

Vậy M'(-3 ; 0 ;2).

c) Tính khoảng cách từ điểm M đến mặt phẳng (α) bằng 2 cách sau:

Cách 1: Áp dụng công thức ta có:

.

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

      d(M,(α) )= MH = .

13 tháng 7 2017

Đáp án D

Mặt phẳng cần tìm sẽ vuông góc với (ABM). Một vecto pháp tuyến của nó là tích có hướng của vecto pháp tuyến mặt phẳng (ABM) và A B →  

Cũng có thể làm như sau: Khoảng cách lớn nhất là MH với H là hình chiếu vuông góc của M lên đường thẳng AB. Ta tìm được H ( 3 ; − 3 ; − 10 ) .

27 tháng 1 2017

Chọn đáp án A.

Cách 1: Đường thẳng d có một vectơ chỉ phương là 

Cách 2: Vì mặt phẳng  α  chứa đường thẳng d nên  α  có phương trình