K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(BCC'B'\) là hình chữ nhật \( \Rightarrow BC\parallel B'C'\)

\( \Rightarrow \left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^ \circ }\).

b)

\(\Delta AA'B\) vuông tại \(A \Rightarrow \tan \widehat {ABA'} = \frac{{AA'}}{{AB}} = \frac{a}{a} = 1 \Rightarrow \widehat {ABA'} = {45^ \circ }\)

Vậy \(\left( {A'B,\left( {ABC} \right)} \right) = {45^ \circ }\).

c) \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot BC,CC' \bot CM\)

Vậy \(\widehat {BCM}\) là góc nhị diện \(\left[ {B,CC',M} \right]\).

\(\Delta ABC\) đều \( \Rightarrow \widehat {BCM} = \frac{1}{2}\widehat {ACB} = {30^ \circ }\).

d) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)

\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).

\( \Rightarrow CM \bot \left( {ABB'A'} \right)\)

\(\Delta ABC\) đều \( \Rightarrow CM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\).

\(\left. \begin{array}{l}CC'\parallel AA'\\AA' \subset \left( {ABB'A'} \right)\end{array} \right\} \Rightarrow CC'\parallel \left( {ABB'A'} \right)\)

\( \Rightarrow d\left( {CC',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CM = \frac{{a\sqrt 3 }}{2}\)

e) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)

\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).

\( \Rightarrow CM \bot \left( {ABB'A'} \right) \Rightarrow CM \bot A'M\)

\(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot CM\)

\( \Rightarrow d\left( {CC',A'M} \right) = CM = \frac{{a\sqrt 3 }}{2}\)

g) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4},h = AA' = a\)

\( \Rightarrow {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^2}\sqrt 3 }}{4}.a = \frac{{{a^3}\sqrt 3 }}{4}\)

\({S_{\Delta MBC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{8},h = AA' = a\)

\( \Rightarrow {V_{A'.MBC}} = \frac{1}{3}{S_{\Delta MBC}}.AA' = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{8}.a = \frac{{{a^3}\sqrt 3 }}{{24}}\)

22 tháng 8 2023

tham khảo

loading...

a) Vì \(AA'//BB'\) nên góc giữa \(AA'\) và \(BC\) là góc giữa \(BB'\) và \(BC\).

Vì cạnh bên vuông góc với đáy nên \(BB'\perp BC\). Do đó, \(\widehat{B'BC}=90^o\)

\(A'B'//AB\) nên góc giữa \(A'B'\)\(AC\) là góc giữa \(AB\) và \(AC\).

Ta có:\(\cos\widehat{BAC}=\dfrac{2,4^2+2,4^2-2^2}{2.2,4.2,4}=\dfrac{47}{72}\)

Nên \(\widehat{BAC}=49,2^o\)

b) Kẻ \(AH\perp BC\). Vì cạnh bên vuông góc với đáy nên \(BB'\perp AH\).

Ta có \(AH\perp BB',AH\perp BC\) nên \(AH\perp\left(BCC'B'\right)\).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 10 2017

Đáp án B.

Do H là trung điểm AB nên 

=> d(B;(ACC'A'))= 2d(H;(ACC'A'))

Ta có A'H ⊥ (ABC) nên 

Gọi D là trung điểm của AC thì BD ⊥ AC

 Kẻ HE ⊥ AC, 

Ta có 

Trong (A'HE) kẻ HK ⊥ A'E, 

Suy ra = 2HK

Ta có 

Xét tam giác vuông A'AH có 

Xét tam giác vuông A'HE có 

5 tháng 9 2018

Đáp án D.

Nhận thấy ∆ ABC là hình chiếu của  ∆ AMC' lên mặt phẳng (ABC).

Gọi φ  là góc giữa (AMC') và (ABC)

Ta có 

=> C'M = 2a

 

NV
20 tháng 4 2023

Gọi D là trung điểm AB \(\Rightarrow A'D\perp\left(ABC\right)\) 

\(\Rightarrow CD\) là hình chiếu vuông góc của A'C lên (ABC)

\(\Rightarrow\widehat{A'CD}\) là góc giữa A'C và (ABC) \(\Rightarrow\widehat{A'CD}=60^0\)

\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)

\(\Rightarrow A'D=CD.tan60^0=3a\)

Từ D kẻ \(DE\perp AC\) (E thuộc AC)

Mà \(A'D\perp\left(ABC\right)\Rightarrow A'D\perp AC\)

\(\Rightarrow AC\perp\left(A'DE\right)\Rightarrow\widehat{AED}\) là góc giữa (A'AC) và (ABC)

\(DE=AD.sinA=a.sin60^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow A'E=\sqrt{A'D^2+DE^2}=\dfrac{a\sqrt{39}}{2}\)

\(\Rightarrow cos\widehat{A'ED}=\dfrac{DE}{A'E}=\dfrac{\sqrt{13}}{13}\)

NV
20 tháng 4 2023

loading...