K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

3
23 tháng 6 2016

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

23 tháng 6 2016

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

7 tháng 12 2018

a) Chứng minh  B 1 ,   C 1 ,   D 1  lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 1 B 1  là đường trung bình của tam giác SAB.

⇒   B 1  là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C 1  là trung điểm của SC.

• D 1  là trung điểm của SD.

b) Chứng minh  B 1 B 2   =   B 2 B ,   C 1 C 2   =   C 2 C ,   D 1 D 2   =   D 2 D .

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 2 B 2  là đường trung bình của hình thang A 1 B 1 B A

⇒   B 2  là trung điểm của B 1 B

⇒   B 1 B 2   =   B 2 B (đpcm)

*Chứng minh tương tự ta cũng được:

• C 2  là trung điểm của C 1 C 2   ⇒   C 1 C 2   =   C 2 C

• D 2  là trung điểm của D 1 D 2   ⇒   D 1 D 2   =   D 2 D .

c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A 1 B 1 C 1 D 1 . A B C D   v à   A 2 B 2 C 2 D 2 . A B C D

31 tháng 3 2017

a) Trong (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE).

b)
Do M = DC ∩ (C'AE) nên  M ∈ (SDC),.
Trong  (SDC) : MC' ∩ SD = F.
Ta có:
\(\left(C'AE\right)\cap\left(SDC\right)=FC'\)
\(\left(C'AE\right)\cap\left(SAD\right)=AF\)
\(\left(C'AE\right)\cap\left(ABCD\right)=AE\)
\(\left(C'AE\right)\cap\left(SBC\right)=C'E\)

Vậy thiết diện là AEC'F.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Xét tam giác HAC ta có: GH = 2GA, HK = 2KC suy ra GK // AC hay GK // (ABCD).

b) (MNEF) // (ABCD) do đó MN // AB, NE // BC, EF // CD, MF // AD

Lại có AB // CD, AD // BC suy ra MN // EF, MF // NE.

Suy ra, tứ giác MNEF là hình bình hành.

22 tháng 10 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + Trong mp(ABCD), AB cắt CD tại E.

E ∈ AB ⊂ (MAB) ⇒ E ∈ (MAB) ⇒ ME ⊂ (MAB)

E ∈ CD ⊂ (SCD) ⇒ E ∈ (SCD)

Mà M ∈ SC ⊂ (SCD)

⇒ ME ⊂ (SCD).

+ Trong mp(SCD), EM cắt SD tại N.

Ta có:

N ∈ SD

N ∈ EM ⊂ mp(MAB)

Vậy N = SD ∩ mp(MAB)

b) Chứng minh SO, MA, BN đồng quy:

+ Trong mặt phẳng (SAC) : SO và AM cắt nhau.

+ trong mp(MAB) : MA và BN cắt nhau

+ trong mp(SBD) : SO và BN cắt nhau.

+ Qua AM và BN xác định được duy nhất (MAB), mà SO không nằm trong mặt phẳng (MAB) nên AM; BN; SO không đồng phẳng.

Vậy SO, MA, BN đồng quy.

27 tháng 5 2019

Giải bài 9 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Giao điểm M của CD và mp(C’AE).

Trong mp(ABCD), d cắt CD tại M, ta có:

+ M ∈ CD

+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)

Vậy M là giao điểm của CD và mp(C’AE).

b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.

N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).

N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)

⇒ N ∈ (C’AE) ∩ (SCD).

⇒ (C’AE) ∩ (SCD) = C’N.

+ (C’AE) ∩ (SCB) = C’E.

+ (C’AE) ∩ (SAD) = AN.

+ (C’AE) ∩ (ABCD) = AE

Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE

Chọn B

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha