K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4 2024

Pt hoành độ giao điểm: \(x^2=2x-m+3\) (1) 

\(\Leftrightarrow x^2-2x+m-3=0\)

\(\Delta'=1-\left(m-3\right)>0\Rightarrow m< 4\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)

Do \(x_1\) là nghiệm của (1) nên: \(x_1^2=2x_1-m+3\)

Thế vào:

\(x_1^2+12=2x_2-x_1x_2\)

\(\Leftrightarrow2x_1-m+3+12=2x_1-\left(m-3\right)\)

\(\Leftrightarrow x_1-x_2=6\)

\(\Rightarrow x_2=x_1-6\)

Thế vào \(x_1+x_2=2\Rightarrow x_1+x_1-6=2\)

\(\Rightarrow x_1=4\Rightarrow x_2=-2\)

Thay vào \(x_1x_2=m-3\Rightarrow m-3=-8\)

\(\Rightarrow m=-5\) (thỏa mãn)

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-2=0\)

\(\Leftrightarrow3x^2-2mx-4=0\)

a=3; b=-2m; c=-4

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)

=>m=9 hoặc m=-9

NV
23 tháng 4 2021

Phương trình hoành độ giao điểm d và (P):

\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)

27 tháng 4 2021

A ơi, chỗ \(m< -\dfrac{1}{8}\) ý, dấu > mới đúng chứ a!?

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-4=0\)

\(\Leftrightarrow3x^2-2mx-8=0\)

ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)

hay m=6 hoặc m=-6

11 tháng 5 2022

giúp mình cả câu a được k bạn ._.

NV
21 tháng 4 2021

Phương trình hoành độ giao điểm:

\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=1+8m>0\Rightarrow m>-\dfrac{1}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\)

\(\Rightarrow m=1\) (thỏa mãn)

9 tháng 3 2022

Hoành độ giao điểm tm pt 

\(x^2-mx+3=0\)

\(\Delta=m^2-4.3=m^2-12\)

Để pt có 2 nghiệm pb khi m^2 - 12 > 0 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)

Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

30 tháng 4 2020

*) xét pt hoành độ giao điểm của d và (P)

-x2=2x+m-1

<=> \(x^2+2x+m-1=0\left(1\right)\)

Có \(\Delta'=1-m+1=2-m\)

*) Để d giao với (P) tại 2 điểm phân biệt

<=> pt (1) có 2 nghiệm phân biệt \(x_1;x_2\)

<=> \(\Delta'>0\Leftrightarrow m< 2\)

*) áp dụng Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{2a}=-1\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

*) Có: \(x_1^3-x_2^3+x_1x_2=4\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(5-m\right)=5-m\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)

\(\Rightarrow m-1=x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)

<=> \(m=\frac{7}{4}\)(tmđk m<2)

30 tháng 4 2020

Vừa nãy mình viết nhầm Vi-et. Mình làm lại

Xét pt hoành độ của d và (P) có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\left(1\right)\)

Có \(\Delta'=1-m+1=2-m\)

Để d cắt (P) tại 2 điểm phân biệt <=> pt (1) có 2 nghiệm phân biệt

<=> \(\Delta'>0\Leftrightarrow m< 2\)

Theo Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

Có \(x_1^3-x_2^3+x_1x_2=4\)

<=> \(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)

<=> \(\left(x_1-x_2\right)\left(5-m\right)=5-m\)

<=> \(\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)

=> m-1=\(x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)

<=> \(m=\frac{7}{4}\)(tmđk)

7 tháng 6 2017

Đáp án B