K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

1. Gọi giao điểm của CH với AB là I,  AH với BC là K,Ta có tứ giác BIHK nội tiếp I^BK+K^HI=1800K^HI=A^HCI^BK+A^HC=1800 (1) Ta lại có I^BK=A^MC (hai góc nội tiếp cùng chắn một cung)

A^MC=A^PC (t/c đối xứng)  I^BK=A^PC  (2)Từ (1) và (2)   A^PC+A^HC=1800Suy ra tứ giác AHCP nội tiếp.2. Tứ giác AHCP nội tiếp A^HP=A^CP=A^CMTa lại có  A^CM+A^BM=1800A^HP+A^BM=1800   mà  A^BM=A^BN

A^HP+A^BN=1800   (3)Chứng minh tương tự câu 1) ta có tứ giác AHBN nội tiếp

    A^BN=A^HN   (4)

Từ (3) và (4) A^HP+A^HN=1800 N, H, P thẳng hàng

3. M^AN=2B^AM;M^AP=2M^AC

=> N^AP=2(B^AM+M^AC)=2B^AC (<180độ) không đổi

Có AN = AM = AP, cần chứng minh NP = 2.AP.sinBAC

 => NP lớn nhất <=>  AP lớn nhất mà AP = AM 

AM lớn nhất  <=> AM là đường kính của đường tròn (O)

Vậy NP lớn nhất <=>  AM là đường kính của đường tròn.

 

 

24 tháng 2 2021

a)gọi I là giao điểm của CH và AB

K là giao điểm AH và BC

ta có :góc IBK+ AHC=180 độ

mà góc IBK= APC 

=> tứ giác AHCP nội tiếp 

b)Ta có Góc AHP= ACP cùng chắn cung AP (

mà góc ACP=ACM (1)

=> góc ACP= AHP

cmtt 

gócAHN=ABN cùng chắn cung AP

mà ABN=ABM => AHN=ABM(2)

Xét tứ giác ABMC nội tiếp 

gócACM+ABM=180 độ (3)

từ (1)(2)(3) => 

góc AHP+AHN=180 độ

=> N,H,P thẳng hàng

ta có góc MAN=2BAM,

góc MAP=2MAC

=> NAP=2(BAM+MAC)

=2 x góc BAC (ko đổi )

ta có AM=AN=AP 

 

NP=2AP.sin BAC=2AM.sinBAC

=> NP lớn nhất <=> AM Max 

21 tháng 11 2019

Ta có  NHC = ABC (cùng phụ với HCB)                         (1)

Vì ABDC là tứ giác nội tiếp nên ABC = ADC                  (2)

Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra

∆ADC = ∆AEC (c.c.c) => ADC = AEC                           (3)

Tương tự ta có AEK = ADK

Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o

Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)

7 tháng 11 2020

chominhf hoi cau a lm nhu nao a

27 tháng 3 2018

a, BH ^ AC và CM ^ AC Þ BH//CM

Tương tự => CH//BM

=> BHCM là hình bình hành

b, Chứng minh BNHC là hình bình hành

=> NH//BC

=> AH ^ NH =>  A H M ^ = 90 0

Mà  A B N ^ = 90 0 => Tứ giác AHBN nội tiếp

c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng

d,  A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN

AN = AM = 2R, AB = R 3 =>  A m B ⏜ = 120 0

S A O B = 1 2 S A B M = R 2 3 4

S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3

=> S cần tìm =  2 S A m B ⏜ = R 2 6 4 π - 3 3

18 tháng 5 2021
Bài này sử dụng tứ giác nội tiếp và sử dụng góc bẹt

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy