Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ba ý đầu mị lm ntn này nek, coi đúng hông ha^^
a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung
=>ABD=ACE(ch-gn)
ý b bỏ ha, lm ý c
AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A
=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)
xét tam giác ABC cân tại A:
=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)
Từ (1) và (2) => góc AED=EBC
mak hay góc mày ở vtris đồng vị nên ED//BC
#)Giải :
a) Áp dụng định lí py - ta - go :
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=10^2-8^2=36\Rightarrow AC=\sqrt{36}=6\)
b) Dễ c/m \(\Delta ABC=\Delta ABD\left(c.g.c\right)\)
\(\Rightarrow BD=BC\) (cặp cạnh t/ứng = nhau)
\(\Rightarrow\Delta BDC\) cân tại B
A C B D E M
Giải: a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AC2 = BC2 - AB2 = 102 - 82 = 100 - 64 = 36
=> AC = 6
b) Xét t/giác ABC và t/giác ABD
có: AB : chung
\(\widehat{BAC}=\widehat{BAD}=90^0\) (gt)
AC = AD (gt)
=> t/giác ABC = t/giác ABD (c.g.c)
=> BC = BD (2 cạnh t/ứng)
=> t/giác BDC cân tại B
c) Ta có: AM // BD => \(\widehat{D}=\widehat{MAC}\)(đồng vị)
mà \(\widehat{D}=\widehat{C}\)(vì t/giác ABC = t/giác ABD)
=> \(\widehat{MAC}=\widehat{C}\) => t/giác MAC cân tại M => MA = MC (1)
AM // BD => \(\widehat{DBA}=\widehat{BAM}\)(so le trong)
mà \(\widehat{DBA}=\widehat{ABM}\) (vì t/giác ABC = t/giác ABD)
=> \(\widehat{BAM}=\widehat{ABM}\) => t/giác ABM cân tại M => BM = AM (2)
Từ (1) và (2) => BM = CM
d) Xét t/giác AMB và t/giác EMC
có: AM = ME (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
BM = CM (cmt)
=> t/giác AMB = t/giác EMC (c.g.c)
=> \(\widehat{BAM}=\widehat{MEC}\) (2 góc t/ứng)
Tương tự, xét t/giác BME và t/giác CMA
=> t/giác BME = t/giác CMA (c.g.c)
=> \(\widehat{BEM}=\widehat{MAC}\) (2 góc t/ứng)
Ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\) (phụ nhau)
=> \(\widehat{CEM}+\widehat{BEM}=90^0\)
=> \(\widehat{BEC}=90^0\)
a, xét △ AMB và △ AMC có:
AB=AC(gt)
góc BAM=góc CAM (gt)
AM chung
=> △ AMB= △ AMC(c.g.c)
b,xét △ AHM và △ AKM có:
AM cạnh chung
góc HAM=ˆgóc KAM (gt)
=>△ AHM= △ AKM(CH-GN)
=> AH=AK
c,gọi I là giao điểm của AM và HK
xét △ AIH và △ AIK có:
AH=AK(theo câu b)
góc AIH=ˆgóc AIK (gt)
AI chung
=> △ AIH=△ AIK (c.g.c)
=> góc AIH=ˆgóc AIK
mà góc AIH+góc AIK=180độ(2 góc kề bù)
=> HK ⊥ AM
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: MK//AC
=>\(\widehat{KMA}=\widehat{MAC}\)
mà \(\widehat{MAC}=\widehat{KAM}\)
nên \(\widehat{KMA}=\widehat{KAM}\)
=>ΔKAM cân tại K
=>KA=KM
Ta có: KM//AC
=>\(\widehat{KMB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{ABC}\)(ΔABC cân tại A)
nên \(\widehat{KMB}=\widehat{KBM}\)
=>KM=KB
mà KM=KA
nên KB=KA
=>K là trung điểm của AB
c: ΔAMB=ΔAMC
=>MB=MC
=>M là trung điểm của BC
Xét ΔABC có
AM,CK là các đường trung tuyến
AM cắt CK tại H
Do đó: H là trọng tâm của ΔABC
=>BH cắt AC tại trung điểm của AC
=>E là trung điểm của AC
Trên tia đối của tia EB, lấy N sao cho EN=EB
Xét ΔEBC và ΔENA có
EB=EN
\(\widehat{BEC}=\widehat{NEA}\)
EC=EA
Do đó: ΔEBC=ΔENA
=>BC=AN
Xét ΔABN có AB+AN>BN
mà AN=BC và BN=2BE
nên BA+BC>2BE