Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)
\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)
\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
- ĐK \(x\ne0\Rightarrow\)\(\left(3x-1\right)\left(5-\frac{1}{2x}\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2x}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=1\\10x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{10}\end{cases}}}\)
- ĐK \(2x-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)\(\frac{1}{4}+\frac{1}{3}:\left(2x-2\right)=5\Leftrightarrow\frac{1}{4}+\frac{1}{3\left(2x-1\right)}=5\)\(\Leftrightarrow3\left(2x-1\right)+4=4.3.5.\left(2x-1\right)\Leftrightarrow6x-3+4=120x-60\)\(\Leftrightarrow114x=61\Leftrightarrow x=\frac{61}{114}\)
- \(\left(2x+\frac{3}{5}\right)^2-\left(\frac{3}{5}\right)^2=0\Leftrightarrow\left(2x+\frac{3}{5}-\frac{3}{5}\right)\left(2x+\frac{3}{5}+\frac{3}{5}\right)=0\)\(2x\left(2x+\frac{6}{5}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-\frac{6}{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
- \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\Leftrightarrow3x-\frac{1}{2}=\sqrt[3]{-\frac{1}{27}}\)\(\Leftrightarrow3x-\frac{1}{2}=-\frac{1}{3}\Leftrightarrow3x=\frac{1}{6}\Leftrightarrow x=\frac{1}{18}\)
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
câu trả lời của thu hương rất hay!
Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không
hiihhi
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
\(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=9\\2x-3=9\\x-1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=6\\x=10\end{matrix}\right.\)
Vậy \(x=\left\{3,5;6;10\right\}\)
d: Sửa đề: \(\left(4x-5\right)^2\cdot\left(2x-3\right)\left(x-1\right)=9\)
a: \(\Leftrightarrow\left(2x^2+x\right)^2-3\left(2x^2+x\right)-\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)\left(2x^2+x-3\right)-\left(2x^2+x-3\right)=0\)
\(\Leftrightarrow\left(2x^2+x-3\right)\left(2x^2+x-1\right)=0\)
\(\Leftrightarrow\left(2x^2+3x-2x-3\right)\left(2x^2+2x-x-1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)\left(x+1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-\dfrac{3}{2};1;-1;\dfrac{1}{2}\right\}\)