Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
+ Tô màu ô vuông số 2: có C 3 2 cách chọn 2 trong 3 màu, có C 4 2 cách tô 2 màu đó lên 4 cạnh. Vậy có C 3 2 C 4 2 = 18cách.
+ Tô màu ô vuông số 1,5,3: có C 2 1 cách chọn màu còn lại, có C 3 2 cách tô màu còn lại lên 3 cạnh còn lại của 1 hình vuông. Vậy có ( C 2 1 C 3 2 ) 3 = 6 3 cách
+ Tô màu ô vuông số 4,6: Mỗi 1 hình vuông có 2 cách tô màu. Vậy có 2 2 = 4cách.
Vậy có 18. 6 3 .4 = 15552 cách thỏa mãn.
a) Gọi I là giao điểm của mặt phẳng (α) với cạnh SC. Ta có: (α) ⊥ SC, AI ⊂ (α) ⇒ SC ⊥ AI. Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và AI ⊂ (α), nên K là giao điểm của SO với (α).
b) Ta có
⇒ BD ⊥ SC
Mặt khác BD ⊂ (SBD) nên (SBD) ⊥ (SAC).
Vì BD ⊥ SC và (α) ⊥ SC nhưng BD không chứa trong (α) nên BD // (α)
Ta có K = SO ∩ (α) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của (α) và (SBD).
Mặt phẳng (SBD) chứa BD // (α) nên cắt theo giao tuyến d // BD. Giao tuyến này đi qua K là điểm chung của (α) và (SBD).
Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.
a: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
b: Tham khảo:
Đáp án A
Ta có: B là hình chiếu của B lên (ABCD)
A là hình chiếu của S lên (ABCD)
Suy ra góc tạo bởi (ABCD) là góc φ = S B A ^ .
Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.
Hai tam giác ΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′ và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.
Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.
Tam giác DEFDEF lần lượt có D′E=D′B′2=√132D′E=D′B′2=132, D′F=D′A2=52D′F=D′A2=52, EF=B′A2=√5EF=B′A2=5.
Theo hê rông ta có: SDEF=√614SDEF=614. Suy ra D′H=2SDEFEF=√30510D′H=2SDEFEF=30510.
Tam giác D′A′HD′A′H có: cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cosA′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.
Do đó ˆA′HD′≈118,4∘A′HD′^≈118,4∘ hay (ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.
Gọi NN và PP lần lượt là trung điểm của SASA và ABAB.
Theo tính chất đường trung bình trong tam giác ta có NP // SBNP//SB và PC // AMPC//AM.
Suy ra \alpha = \widehat{NP, PC}α=NP,PC.
Ta có NP = \dfrac{SB}2 = \dfrac{\sqrt5}2NP=2SB=25 và PC = AM = \sqrt 5PC=AM=5;\\ NC = \sqrt{NA^2 + AC^2} = \sqrt{\dfrac14 + 8} = \dfrac{\sqrt{33}}2.NC=+=41=233.
\Rightarrow \cos \widehat{NPC} = \dfrac{NP^2+PC^2-NC^2}{2.NP.PC} = \dfrac{\dfrac54 + 5 - \dfrac{33}4}{2.\dfrac{\sqrt5}2.\sqrt5} = -\dfrac25⇒cosNPC=2.NP.PCNP2+PC2−NC2=2.25.545+5−433=−52.
Vậy \cos \alpha = \dfrac25cosα=52.2/5