K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~

~~~~~~~~~~~~~~

olm-logo.png

24 tháng 9 2016

15(x-2) . 36(26-x) = 0

<=> 15 ( x-2) =0 hoặc 36( 26-x ) =0

<=> x-2 = 0 hoặc 26 -x = 0

<=> x =2 hoặc x = 26

24 tháng 8 2019

\(=4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)

\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\) (1)

Đặt: \(x^2+60=t\)

\(4\left(t+17x\right)\left(t+16x\right)-3x^2\)

\(=4t^2+132tx+1085x^2\)

\(=\left(4t^2+70xt\right)+\left(62xt+1085t^2\right)\)

\(=\left(2t+31x\right)\left(2t+35x\right)\)

\(=\left(2\left(x^2+60\right)+31x\right)\left(2\left(x^2+60\right)+35x\right)\)

\(=\left(2x+15\right)\left(2x+8\right)\)\(\left(2x^2+35x+120\right)\)

26 tháng 8 2019

có thiệt phát không biết làm không

3 tháng 2 2021

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

3 tháng 2 2021

2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)

Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy x = -2 hoặc x = -4

14 tháng 7 2018

\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=15-8=7\)

\(\Leftrightarrow x=\frac{-7}{2}\)

Vậy \(x=\frac{-7}{2}\)

22 tháng 7 2017

a, x= -3

b, x= -3, x= 3/2

22 tháng 7 2017

Sao khó vậy mày

b: =>(2x-1)(2x-1+4-2x)=0

=>3(2x-1)=0

=>2x-1=0

=>x=1/2

c: =>(x+1)(x^2-x+1)-x(x+1)=0

=>(x+1)(x-1)^2=0

=>x=1 hoặc x=-1

e: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

h: =>x[(x^2-5)^2-4]=0

=>x(x^2-7)(x^2-3)=0

=>\(x\in\left\{0;\pm\sqrt{7};\pm\sqrt{3}\right\}\)

k: =>(x-1)(5x+3-3x+8)=0

=>(x-1)(2x+11)=0

=>x=1 hoặc x=-11/2

l: =>x^2(x+1)+(x+1)=0

=>(x+1)(x^2+1)=0

=>x+1=0

=>x=-1

22 tháng 7 2017

TA CÓ:

\(a,\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\Leftrightarrow\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\left(x-3\right)\left(4x-1-5x-2\right)=0\Leftrightarrow\left(x-3\right)\left(-x-3\right)=0\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

\(b,\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\Leftrightarrow\left(x+3\right)\left(x-5+3x-4\right)=0\)

\(\left(x-3\right)\left(4x-9\right)=0\orbr{\begin{cases}x=3\\x=\frac{9}{4}\end{cases}}\)

\(c,\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\Leftrightarrow\left(1-x\right)\left(5x+3\right)=\left(7-3x\right)\left(1-x\right)\)

\(\left(1-x\right)\left(5x+3-7+3x\right)=0\Leftrightarrow\left(1-x\right)\left(8x-4\right)=0\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

(x+2).(x+3).(x+4).(x+5)−24

=(x2+7x+10).(x2+7x+12)−24

=(x2+7x+10).(x2+7x+10+2)−24

Đặt x2+7x+10=t, ta có

t.(t+2)−24

=t2+2t−24

=t2+2t+1−25

=(t−1)2−25

=(t−1−5)(t−1+5)

=(t−6)(t+4)

=(x2+7x+10−6)(x2+7x+10+4)

(x2+7x+4)(x2+7x+14)

P/s tham khảo nha

\(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)

\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+10+2\right)-24\)

Đặt \(x^2+7x+10=t\), ta có

\(t.\left(t+2\right)-24\)

\(\Leftrightarrow t^2+2t-24\)

\(\Leftrightarrow t^2+2t+1-25\)

\(\Leftrightarrow\left(t-1\right)^2-25\)

\(\Leftrightarrow\left(t-1-5\right)\left(t-1+5\right)\)

\(\Leftrightarrow\left(t-6\right)\left(t+4\right)\)

\(\Rightarrow\left(x^2+7x+10-6\right)\left(x^2+7x+10+4\right)\)

\(\Leftrightarrow\left(x^2+7x+4\right)\left(x^2+7x+14\right)\)

P/s tham khảo nha