Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -1 - 2 - 3 - ... - 100
= -(1 + 2 + 3 + ... + 100)
= -100.101 : 2
= -5050
--------
B = -2 - 4 - 6 - ... - 100
= -(2 + 4 + 6 + ... + 100)
Số số hạng của B:
(100 - 2) : 2 + 1 = 50 (số)
B = -(100 + 2) . 50 : 2 = -2550
--------
C = -6 - 9 - 12 - ... - 99
= -(6 + 9 + 12 + ... + 99)
Số số hạng của C:
(99 - 6) : 3 + 1 = 32 (số)
C = -(99 + 6) . 32 : 2 = -1680
--------
D = 4 - 8 + 12 - 16 + ... + 196 - 200
Số số hạng của D:
(200 - 4) : 4 + 1 = 50 (số)
D = (4 - 8) + (12 - 16) + ... + (196 - 200)
= -4 + (-4) + ... + (-4) (25 số -4)
= -4.25
= -100
\(S=\frac{2^2}{2^2-1}\times\frac{3^2}{3^2-1}\times...\times\frac{100^2}{100^2-1}\times\frac{101^2}{101^2-1}\)
\(=\frac{\left(2\times3\times4\times...\times101\right)\times\left(2\times3\times4\times...\times101\right)}{\left(1\times2\times3\times...\times100\right)\times\left(3\times4\times5\times...\times102\right)}\)
\(=\frac{101\times2}{1\times102}=\frac{101}{51}\)
\(51\times S=101\)
Ta có: \(S=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
\(=\dfrac{3}{2^2}\cdot\dfrac{2^3}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99}{10^2}\)
\(=\dfrac{11}{20}\)
bạn có thể giải thích rõ tại sao S=\(\dfrac{11}{20}\) đc ko
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
ok,3/4=1.3/2.2
8/9=2.4/3.3
15/16=3.5/4.4
........................
99/100=9.11/10.10
=1.2.3.4.5.6.7.8.9.2.3.4.......11/2.2.3.3.4.4.....10.10
=(1.2.3.4.5.6.7.8.9/2.3.4.5.6.7.8.9.10).(3.4.5.6.7.8.9.10.11/2.3.4.5.6.7.8.9.10)
=1/10.11/2=11/20<9
chúc học tốt
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{10^2-1}{10^2}.\)
A là tổng của 9 số hạng; mỗi số hạng đều nhỏ hơn 1 nên A<9*1<50.
\(\frac{3.8.15.35...99}{4.9.16.36.100}\\ =\frac{1.3.2.4.3.5.5.7....9.11}{2.2.3.3......10.10}\)
\(=\frac{\left(1.2.3....9\right).\left(3.4.5...11\right)}{\left(2.3.....10\right).\left(2.3...10\right)}=\frac{11}{10}\)