K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2020

A=3(x-4)4

Vì (x-4)4 ≥0

=>3(x-4)4 ≥0

Vậy MinA=0

18 tháng 1 2020

B=5+2(x-2019)2020

Vì (x-2019)2020 ≥0

=>5+(x-2019)2020 ≥5

Để B đạt Min 

=>x-2019=0

=>x=2019

Vậy MinB=5 <=>x=2019

24 tháng 8 2019

Hello bạn, mk cx tên Mai nek.

\(\frac{2}{5}.\left(x-1\right)+1=\frac{3}{5}\)

\(\Rightarrow\frac{2}{5}\left(x+1\right)=\frac{3}{5}-1\)

\(\Rightarrow\frac{2}{5}\left(x+1\right)=-\frac{2}{5}\)

\(\Rightarrow x+1=-\frac{2}{5}:\frac{2}{5}\)

\(\Rightarrow x+1=-1\)

\(\Rightarrow x=-1-1\)

\(\Rightarrow x=-2\)

24 tháng 8 2019

\(\left(\frac{2}{7}\times x+1\right)\times\left(3-\frac{1}{2}\times x\right)=0\)

\(TH1:\frac{2}{7}\times x+1=0\)

\(\frac{2}{7}\times x=-1\)

\(x=-\frac{2}{7}\)

\(TH2:3-\frac{1}{2}\times x=0\)

\(\frac{1}{2}\times x=3\)

\(x=\frac{3}{2}\)

Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{7}\right\}\)

14 tháng 9 2015

2x+2x+1+2x+2+.....+2x+2020 = 22021 - 1

2x.(1+2+22+....+22020) = 2021 - 1

Đặt M = 1+2+22+...+22020

2M = 2+22+23+...+22021

2M - M = 22021-1

=> M = 22021 - 1

Thay vào, ta có:

2x.(22021 - 1) = 22021 - 1

=> 2x = 1

=> x = 0

5 tháng 9 2019

b. 1404 : [118 - (4x + 6)] = 27

118 - (4x + 6) = 52

4x + 6 = 66

4x = 60

x = 15

5 tháng 9 2019

d) \(5x^2-3x=0\)

\(\Leftrightarrow x\left(5x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{5}\end{cases}}\)

e) \(3\left(x-1\right)+4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[3-4.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3-4\left(x-1\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\4\left(x-1\right)=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\end{cases}}\)

f) \(2\left(x-2\right)^2=\left(x-2\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x-2=\frac{1}{2}\Rightarrow x=\frac{5}{2}\end{cases}}\)

g) \(\left(x-2020\right)^4=\left(x-2020\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2020\right)^2=0\\\left(x-2020\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=2019,x=2021\end{cases}}\)

20 tháng 9 2020

+) \(A=3\left(x-4\right)^4-4\ge-4\)

Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)

Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

+) \(C=5+2018\left(2020-x\right)^2\)

Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)

+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)

Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)

+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)

Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

21 tháng 2 2020

x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 + 2020 = 2020

Ta gọi biểu thức đấy là B

x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 = 2020 - 2020

x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 = 0

Có 2020 - x số hạng

B = \(\frac{\text{(2019 − x)(2020 - x)}}{\text{2}}=0\)

=> 2019 + x = 0

x = -2019

=> 2020 - x = 0

x = 2020

➤ Vậy x = {-2019; 2020}

28 tháng 10 2019

MÌNH CHỈ HUONWGS DẪN CÁCH LÀM THÔI NHÉ

PTÁCH SỐ 

1x22 +2x32+3x42 +.....+2018x2019+ 2019x20202

= 1x2x3 - 1x2 + 2x3x4 - 2x3+  3x4x5 - 3x4 + ... + 2018x2019x2020 - 2018x2019 +2019x2020x2021 - 2019x2020

=(1x2x3+3x4x5+....+2018x2019x2020+2019x2020x2021) - (1x2+2x3+..+2018x2019+2019x2020)

=                              S                                                         -                         P                                      (*****)

Tính 4S   =>  S=.....    (1)

Tính 3P   =>   P=.....     (2)

TỪ (1) và (2) thay vào (*****)  TA TÍNH ĐƯỢC    A=.....

23 tháng 8 2020

Ta có: \(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right).\left(x+2\right)}+\frac{1}{\left(x+2\right).\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)

    \(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2020}\)

    \(\Leftrightarrow-\frac{1}{\left(x+3\right)}=\frac{1}{2020}\)

    \(\Rightarrow-\left(x+3\right)=2020\)

    \(\Leftrightarrow-x-3=2020\)

    \(\Leftrightarrow-x=2023\)

    \(\Leftrightarrow x=-2023\)

Vậy \(x=-2023\)

23 tháng 8 2020

Bài làm:

Ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)

\(\Leftrightarrow\frac{\left(x+1\right)-x}{x\left(x+1\right)}+\frac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2020}\)

\(\Rightarrow\frac{1}{-x-3}=\frac{1}{2020}\)

\(\Rightarrow-x-3=2020\Rightarrow x=-2023\)